Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2004 Oct;31(10):2912-23.
doi: 10.1118/1.1796171.

Registration of central paths and colonic polyps between supine and prone scans in computed tomography colonography: pilot study

Affiliations
Clinical Trial

Registration of central paths and colonic polyps between supine and prone scans in computed tomography colonography: pilot study

Ping Li et al. Med Phys. 2004 Oct.

Abstract

Computed tomography colonography (CTC) is a minimally invasive method that allows the evaluation of the colon wall from CT sections of the abdomen/pelvis. The primary goal of CTC is to detect colonic polyps, precursors to colorectal cancer. Because imperfect cleansing and distension can cause portions of the colon wall to be collapsed, covered with water, and/or covered with retained stool, patients are scanned in both prone and supine positions. We believe that both reading efficiency and computer aided detection (CAD) of CTC images can be improved by accurate registration of data from the supine and prone positions. We developed a two-stage approach that first registers the colonic central paths using a heuristic and automated algorithm and then matches polyps or polyp candidates (CAD hits) by a statistical approach. We evaluated the registration algorithm on 24 patient cases. After path registration, the mean misalignment distance between prone and supine identical anatomic landmarks was reduced from 47.08 to 12.66 mm, a 73% improvement. The polyp registration algorithm was specifically evaluated using eight patient cases for which radiologists identified polyps separately for both supine and prone data sets, and then manually registered corresponding pairs. The algorithm correctly matched 78% of these pairs without user input. The algorithm was also applied to the 30 highest-scoring CAD hits in the prone and supine scans and showed a success rate of 50% in automatically registering corresponding polyp pairs. Finally, we computed the average number of CAD hits that need to be manually compared in order to find the correct matches among the top 30 CAD hits. With polyp registration, the average number of comparisons was 1.78 per polyp, as opposed to 4.28 comparisons without polyp registration.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources