Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec 3;344(4):893-905.
doi: 10.1016/j.jmb.2004.10.002.

Regulation of transcriptional silencing in yeast by growth temperature

Affiliations

Regulation of transcriptional silencing in yeast by growth temperature

Xin Bi et al. J Mol Biol. .

Abstract

Increasing evidence indicates that transcriptionally silent chromatin structure is dynamic and may change its conformation in response to external or internal stimuli. We show that growth temperature affects all three forms of transcriptional silencing in Saccharomyces cerevisiae. In general, increasing the temperature within the range of 23-37 degrees C strengthens HM and telomeric silencing but reduces rDNA silencing. High temperature (37 degrees C) can suppress the silencing defects of histone H4 mutants. We demonstrate that DNA at the silent HML locus becomes more and more negatively supercoiled as temperature increases in a Sir-dependent manner, which is indicative of enhanced silent chromatin. This enhancement of silent chromatin is not dependent on silencers and therefore does not require de novo assembly of silent chromatin. We also present evidence suggesting that MAP kinase-mediated Sir3p hyperphosphorylation, which plays a role in regulating silencing in response to certain stress conditions, is not involved in high temperature-induced strengthening of silencing. In addition, Pnc1p, a positive regulator of Sir2p activity, plays no role in thermal regulation of silencing. Therefore, growth temperature regulates transcriptional silencing by a novel mechanism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources