Protein biophysical properties that correlate with crystallization success in Thermotoga maritima: maximum clustering strategy for structural genomics
- PMID: 15544807
- DOI: 10.1016/j.jmb.2004.09.076
Protein biophysical properties that correlate with crystallization success in Thermotoga maritima: maximum clustering strategy for structural genomics
Abstract
Cost and time reduction are two of the driving forces in the development of new strategies for protein crystallization and subsequent structure determination. Here, we report the analysis of the Thermotoga maritima proteome, in which we compare the proteins that were successfully expressed, purified and crystallized versus the rest of the proteome. This set of almost 500 proteins represents one of the largest, internally consistent, protein expression and crystallization datasets available. The analysis shows that individual parameters, such as isoelectric point, sequence length, average hydropathy, low complexity regions (SEG), and combinations of these biophysical properties for crystallized proteins define a distinct subset of the T. maritima proteome. The distribution profiles of the various biophysical properties in the expression/crystallization set are then used to extract rules to improve target selection and improve the efficiency and output of structural genomics, as well as general structural biology efforts.
Similar articles
-
Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline.Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11664-9. doi: 10.1073/pnas.142413399. Epub 2002 Aug 22. Proc Natl Acad Sci U S A. 2002. PMID: 12193646 Free PMC article.
-
A scaleable and integrated crystallization pipeline applied to mining the Thermotoga maritima proteome.J Struct Funct Genomics. 2004;5(1-2):133-46. doi: 10.1023/B:JSFG.0000029194.04443.50. J Struct Funct Genomics. 2004. PMID: 15263852
-
Shotgun crystallization strategy for structural genomics II: crystallization conditions that produce high resolution structures for T. maritima proteins.J Struct Funct Genomics. 2005;6(2-3):209-17. doi: 10.1007/s10969-005-1916-7. J Struct Funct Genomics. 2005. PMID: 16211521
-
Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species.FEMS Microbiol Rev. 2006 Nov;30(6):872-905. doi: 10.1111/j.1574-6976.2006.00039.x. FEMS Microbiol Rev. 2006. PMID: 17064285 Review.
-
Crystallization data mining in structural genomics: using positive and negative results to optimize protein crystallization screens.Methods. 2004 Nov;34(3):373-89. doi: 10.1016/j.ymeth.2004.03.026. Methods. 2004. PMID: 15325655 Review.
Cited by
-
XANNpred: neural nets that predict the propensity of a protein to yield diffraction-quality crystals.Proteins. 2011 Apr;79(4):1027-33. doi: 10.1002/prot.22914. Epub 2011 Jan 18. Proteins. 2011. PMID: 21246630 Free PMC article.
-
Protein Crystal Engineering of YpAC-IV using the Strategy of Excess Charge Reduction.Cryst Growth Des. 2009 Aug 5;9(8):3570-3574. doi: 10.1021/cg9003142. Cryst Growth Des. 2009. PMID: 20160955 Free PMC article.
-
Predicting Crystallization Propensity of Proteins from Arabidopsis Thaliana.Biol Proced Online. 2015 Nov 23;17:16. doi: 10.1186/s12575-015-0029-3. eCollection 2015. Biol Proced Online. 2015. PMID: 26604856 Free PMC article.
-
Analysis of crystallization data in the Protein Data Bank.Acta Crystallogr F Struct Biol Commun. 2015 Oct;71(Pt 10):1228-34. doi: 10.1107/S2053230X15014892. Epub 2015 Sep 23. Acta Crystallogr F Struct Biol Commun. 2015. PMID: 26457511 Free PMC article.
-
Predicting protein crystallization propensity from protein sequence.J Struct Funct Genomics. 2010 Mar;11(1):71-80. doi: 10.1007/s10969-010-9080-0. Epub 2010 Feb 23. J Struct Funct Genomics. 2010. PMID: 20177794 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources