Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 11;280(6):4713-21.
doi: 10.1074/jbc.M411360200. Epub 2004 Nov 15.

Identification and characterization of the terminal enzyme of siroheme biosynthesis from Arabidopsis thaliana: a plastid-located sirohydrochlorin ferrochelatase containing a 2FE-2S center

Affiliations
Free article

Identification and characterization of the terminal enzyme of siroheme biosynthesis from Arabidopsis thaliana: a plastid-located sirohydrochlorin ferrochelatase containing a 2FE-2S center

Evelyne Raux-Deery et al. J Biol Chem. .
Free article

Abstract

Higher plant sulfite and nitrite reductases contain siroheme as a prosthetic group. Siroheme is synthesized from the tetrapyrrole primogenitor uroporphyrinogen III in three steps involving methylation, oxidation, and ferrochelation reactions. In this paper we report on the Arabidopsis thaliana sirohydrochlorin ferrochelatase At-SirB. The complete precursor protein of 225 amino acids and shorter constructs in which the first 46 or 79 residues had been removed were shown to complement a defined Escherichia coli sirohydrochlorin ferrochelatase mutant. The mature form of the protein appeared to consist of only 150 amino acids, making it much smaller than previously characterized ferrochelatases. Green fluorescent protein tagging revealed that it is located in the chloroplast. The enzyme was easily produced in E. coli as a recombinant protein, and the isolated enzyme was found to have a specific activity of 48.5 nmol/min/mg. Significantly, the protein purified as a brown-colored solution with a UV-visible spectrum containing maxima at 415 and 455 nm, suggestive of an Fe-S center. EPR analysis of the recombinant protein produced a rhombic spectrum with G-values of 2.04, 1.94, and 1.90 and with temperature dependence consistent with a 2Fe-2S center. Redox titration demonstrated that the Fe-S center is highly unstable, with an apparent midpoint reduction potential of about -370 mV. This is the first Fe-S center to be reported in a higher plant ferrochelatase. The implications of the Fe-S center in an enzyme that is so closely associated with the metabolism of sulfur and iron are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms