Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit
- PMID: 15545319
- PMCID: PMC2172592
- DOI: 10.1083/jcb.200406038
Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit
Abstract
Mitochondria are dynamic organelles in cells. The control of mitochondrial motility by signaling mechanisms and the significance of rapid changes in motility remains elusive. In cardiac myoblasts, mitochondria were observed close to the microtubular array and displayed both short- and long-range movements along microtubules. By clamping cytoplasmic [Ca2+] ([Ca2+]c) at various levels, mitochondrial motility was found to be regulated by Ca2+ in the physiological range. Maximal movement was obtained at resting [Ca2+]c with complete arrest at 1-2 microM. Movement was fully recovered by returning to resting [Ca2+]c, and inhibition could be repeated with no apparent desensitization. The inositol 1,4,5-trisphosphate- or ryanodine receptor-mediated [Ca2+]c signal also induced a decrease in mitochondrial motility. This decrease followed the spatial and temporal pattern of the [Ca2+]c signal. Diminished mitochondrial motility in the region of the [Ca2+]c rise promotes recruitment of mitochondria to enhance local Ca2+ buffering and energy supply. This mechanism may provide a novel homeostatic circuit in calcium signaling.
Figures
References
-
- Bhat, M.B., J. Zhao, W. Zang, C.W. Balke, H. Takeshima, W.G. Wier, and J. Ma. 1997. Caffeine-induced release of intracellular Ca2+ from Chinese hamster ovary cells expressing skeletal muscle ryanodine receptor. Effects on full-length and carboxyl-terminal portion of Ca2+ release channels. J. Gen. Physiol. 110:749–762. - PMC - PubMed
-
- Benashski, S.E., A. Harrison, R.S. Patel-King, and S.M. King. 1997. Dimerization of the highly conserved light chain shared by dynein and myosin V. J. Biol. Chem. 272:20929–20935. - PubMed
-
- Bernardi, P., V. Petronilli, F. Di Lisa, and M. Forte. 2001. A mitochondrial perspective on cell death. Trends Biochem. Sci. 26:112–117. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
