Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques
- PMID: 15545610
- PMCID: PMC534505
- DOI: 10.1073/pnas.0402766101
Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques
Abstract
Little is known about how chromatin folds in its native state. Using optimized in situ hybridization and live imaging techniques have determined compaction ratios and fiber flexibility for interphase chromatin in budding yeast. Unlike previous studies, ours examines nonrepetitive chromatin at intervals short enough to be meaningful for yeast chromosomes and functional domains in higher eukaryotes. We reconcile high-resolution fluorescence in situ hybridization data from intervals of 14-100 kb along single chromatids with measurements of whole chromosome arms (122-623 kb in length), monitored in intact cells through the targeted binding of bacterial repressors fused to GFP derivatives. The results are interpreted with a flexible polymer model and suggest that interphase chromatin exists in a compact higher-order conformation with a persistence length of 170-220 nm and a mass density of approximately 110-150 bp/nm. These values are equivalent to 7-10 nucleosomes per 11-nm turn within a 30-nm-like fiber structure. Comparison of long and short chromatid arm measurements demonstrates that chromatin fiber extension is also influenced by nuclear geometry. The observation of this surprisingly compact chromatin structure for transcriptionally competent chromatin in living yeast cells suggests that the passage of RNA polymerase II requires a very transient unfolding of higher-order chromatin structure.
Figures




Similar articles
-
The genome folding mechanism in yeast.J Biochem. 2013 Aug;154(2):137-47. doi: 10.1093/jb/mvt033. Epub 2013 Apr 24. J Biochem. 2013. PMID: 23620598
-
FISH as a tool to investigate chromosome behavior in budding yeast.Methods Mol Biol. 2010;659:363-77. doi: 10.1007/978-1-60761-789-1_28. Methods Mol Biol. 2010. PMID: 20809327
-
Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context.J Mol Biol. 1996 Apr 19;257(5):919-34. doi: 10.1006/jmbi.1996.0212. J Mol Biol. 1996. PMID: 8632475
-
Principles of chromosomal organization: lessons from yeast.J Cell Biol. 2011 Mar 7;192(5):723-33. doi: 10.1083/jcb.201010058. J Cell Biol. 2011. PMID: 21383075 Free PMC article. Review.
-
Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure.Micron. 2011 Dec;42(8):733-50. doi: 10.1016/j.micron.2011.05.002. Epub 2011 May 12. Micron. 2011. PMID: 21703860 Review.
Cited by
-
Computational predictions of structures of multichromosomes of budding yeast.Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3945-8. doi: 10.1109/EMBC.2014.6944487. Annu Int Conf IEEE Eng Med Biol Soc. 2014. PMID: 25570855 Free PMC article.
-
Yeast kinetochore microtubule dynamics analyzed by high-resolution three-dimensional microscopy.Biophys J. 2005 Oct;89(4):2835-54. doi: 10.1529/biophysj.104.058461. Biophys J. 2005. PMID: 16192284 Free PMC article.
-
Use of two-color fluorescence-tagged transgenes to study interphase chromosomes in living plants.Plant Physiol. 2005 Dec;139(4):1586-96. doi: 10.1104/pp.105.071068. Plant Physiol. 2005. PMID: 16339805 Free PMC article.
-
Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling.BMC Bioinformatics. 2011 Oct 25;12:414. doi: 10.1186/1471-2105-12-414. BMC Bioinformatics. 2011. PMID: 22026390 Free PMC article.
-
Protein-mediated chromosome pairing of repetitive arrays.J Mol Biol. 2014 Feb 6;426(3):550-7. doi: 10.1016/j.jmb.2013.11.001. Epub 2013 Nov 8. J Mol Biol. 2014. PMID: 24211468 Free PMC article.
References
-
- Woodcock, C. L. & Dimitrov, S. (2001) Curr. Opin. Genet. Dev. 11, 130–135. - PubMed
-
- Hansen, J. C. (2002) Annu. Rev. Biophys. Biomol. Struct. 31, 361–392. - PubMed
-
- Gasser, S. M. (2002) Science 296, 1412–1416. - PubMed
-
- Marshall, W. F. (2002) Curr. Biol. 12, R185–R192. - PubMed
-
- van den Engh, G., Sachs, R. & Trask, B. J. (1992) Science 257, 1410–1412. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases