Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Dec:202:49-66.
doi: 10.1111/j.0105-2896.2004.00206.x.

Lymphotoxin and LIGHT signaling pathways and target genes

Affiliations
Review

Lymphotoxin and LIGHT signaling pathways and target genes

Kirsten Schneider et al. Immunol Rev. 2004 Dec.

Abstract

Lymphotoxins (LT alpha and LT beta), LIGHT [homologous to LT, inducible expression, competes with herpes simplex virus (HSV) glycoprotein D for HSV entry mediator (HVEM), a receptor expressed on T lymphocytes], tumor necrosis factor (TNF), and their specific receptors LT beta R, HVEM, and TNF receptor 1 (TNFR1) and TNFR2, form the immediate family of the larger TNF superfamily. These cytokines establish a critical communication system required for the development of secondary lymphoid tissues; however, knowledge of the target genes activated by these signaling pathways is limited. Target genes regulated by the LT alpha beta-LT beta R pathway include the tissue-organizing chemokines, CXCL13, CCL19, and CCL21, which establish cytokine circuits that regulate LT expression on lymphocytes, leading to organized lymphoid tissue. Infectious disease models have revealed that LT alpha beta pathways are also important for innate and adaptive immune responses involved in host defense. Here, regulation of interferon-beta by LT beta R and TNFR signaling may play a crucial role in certain viral infections. Regulation of autoimmune regulator in the thymus via LT beta R implicates LT/LIGHT involvement in central tolerance. Dysregulated expression of LIGHT overrides peripheral tolerance leading to T-cell-driven autoimmune disease. Blockade of TNF/LT/LIGHT pathways as an intervention in controlling autoimmune diseases is attractive, but such therapy may have risks. Thus, identifying and understanding the target genes may offer an opportunity to fine-tune inhibitory interventions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources