Conversion of a methionine initiator tRNA into a tryptophan-inserting elongator tRNA in vivo
- PMID: 1554714
- DOI: 10.1021/bi00128a001
Conversion of a methionine initiator tRNA into a tryptophan-inserting elongator tRNA in vivo
Abstract
The role of the anticodon and discriminator base in aminoacylation of tRNAs with tryptophan has been explored using a recently developed in vivo assay based on initiation of protein synthesis by mischarged mutants of the Escherichia coli initiator tRNA. Substitution of the methionine anticodon CAU with the tryptophan anticodon CCA caused tRNA(fMet) to be aminoacylated with both methionine and tryptophan in vivo, as determined by analysis of the amino acids inserted by the mutant tRNA at the translational start site of a reporter protein containing a tryptophan initiation codon. Conversion of the discriminator base of tRNA(CCA)fMet from A73 to G73, the base present in tRNA(Trp), eliminated the in vivo methionine acceptor activity of the tRNA and resulted in complete charging with tryptophan. Single base changes in the anticodon of tRNA(CCA)fMet containing G73 from CCA to UCA, GCA, CAA, and CCG (changes underlined) essentially abolished tryptophan insertion, showing that all three anticodon bases specify the tryptophan identity of the tRNA. The important role of G73 in tryptophan identity was confirmed using mutants of an opal suppressor derivative of tRNA(Trp). Substitution of G73 with A73, C73, or U73 resulted in a large loss of the ability of the tRNA to suppress an opal stop codon in a reporter protein. Base pair substitutions at the first three positions of the acceptor stem of the suppressor tRNA caused 2-12-fold reductions in the efficiency of suppression without loss of specificity for aminoacylation of the tRNA with tryptophan.(ABSTRACT TRUNCATED AT 250 WORDS)
Similar articles
-
Analysis of acceptor stem base pairing on tRNA(Trp) aminoacylation and function in vivo.J Biol Chem. 1994 Jan 21;269(3):2277-82. J Biol Chem. 1994. PMID: 8294486
-
The anticodon and discriminator base are major determinants of cysteine tRNA identity in vivo.J Biol Chem. 1992 Apr 15;267(11):7221-3. J Biol Chem. 1992. PMID: 1373131
-
Switching tRNA(Gln) identity from glutamine to tryptophan.Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3463-7. doi: 10.1073/pnas.89.8.3463. Proc Natl Acad Sci U S A. 1992. PMID: 1565639 Free PMC article.
-
Yeast tRNA(Met) recognition by methionyl-tRNA synthetase requires determinants from the primary, secondary and tertiary structure: a review.Biochimie. 1996;78(7):597-604. doi: 10.1016/s0300-9084(96)80006-x. Biochimie. 1996. PMID: 8955903 Review.
-
Escherichia coli initiator tRNA: structure-function relationships and interactions with the translational machinery.Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1023-31. doi: 10.1139/o95-109. Biochem Cell Biol. 1995. PMID: 8722017 Review.
Cited by
-
The tRNA identity landscape for aminoacylation and beyond.Nucleic Acids Res. 2023 Feb 28;51(4):1528-1570. doi: 10.1093/nar/gkad007. Nucleic Acids Res. 2023. PMID: 36744444 Free PMC article. Review.
-
Anticodon bases C34 and C35 are major, positive, identity elements in Saccharomyces cerevisiae tRNA(Trp).Nucleic Acids Res. 1993 Nov 11;21(22):5079-84. doi: 10.1093/nar/21.22.5079. Nucleic Acids Res. 1993. PMID: 8255761 Free PMC article.
-
Mapping hidden potential identity elements by computing the average discriminating power of individual tRNA positions.DNA Res. 2012 Jun;19(3):245-58. doi: 10.1093/dnares/dss008. Epub 2012 Feb 28. DNA Res. 2012. PMID: 22378766 Free PMC article.
-
Striking effects of coupling mutations in the acceptor stem on recognition of tRNAs by Escherichia coli Met-tRNA synthetase and Met-tRNA transformylase.Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9262-6. doi: 10.1073/pnas.89.19.9262. Proc Natl Acad Sci U S A. 1992. PMID: 1409632 Free PMC article.
-
Functions of the gene products of Escherichia coli.Microbiol Rev. 1993 Dec;57(4):862-952. doi: 10.1128/mr.57.4.862-952.1993. Microbiol Rev. 1993. PMID: 7508076 Free PMC article. Review.