Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov 24;126(46):15180-94.
doi: 10.1021/ja048219r.

Fluorescence and aggregation behavior of poly(amidoamine) dendrimers peripherally modified with aromatic chromophores: the effect of dendritic architectures

Affiliations

Fluorescence and aggregation behavior of poly(amidoamine) dendrimers peripherally modified with aromatic chromophores: the effect of dendritic architectures

Bing-Bing Wang et al. J Am Chem Soc. .

Abstract

PAMAM dendrimers of the zeroth to fifth generation (G0-5) have been peripherally modified with phenyl, naphthyl, pyrenyl, and dansyl chromophores. Their fluorescence behaviors are strongly affected by the dendritic architectures at different generations. These dendrimers modified with hydrophobic chromphores can self-organize into vesicular aggregates at the low generations G0-3 in water. The size and aggregation number of these vesicles decrease with increasing generation from G0 to G3. Critical aggregation concentration determined by fluorescence spectroscopy reveals that these aggregates can be favorably formed in the order of G3 > G2 > G1. In contrast to the vesicles made from traditional amphiphilic compounds, these dendrimer-based vesicles are very adhesive due to the H-bonding interaction and entanglement of dendritic branches located in the outer layer. A large number of multivesicle assemblies, i.e., "twins" and "quins" consisting of two and five vesicles, were clearly identifiable with transmission electron (TEM) and atomic force microscopy. For the dendrimers with peripheral pyrenyl chromophores, triangle-like vesicles were observed in water. The hydrophobic interphase thickness of the vesicular bilayer is ca. 2.0-3.2 nm determined by fluorescence resonance energy transfer methods, which agrees well with the thickness directly observed with TEM.

PubMed Disclaimer

LinkOut - more resources