Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec 6;132(1):1-12.
doi: 10.1016/j.molbrainres.2004.08.016.

One-trial aversive learning induces late changes in hippocampal CaMKIIalpha, Homer 1a, Syntaxin 1a and ERK2 protein levels

Affiliations

One-trial aversive learning induces late changes in hippocampal CaMKIIalpha, Homer 1a, Syntaxin 1a and ERK2 protein levels

Lionel Müller Igaz et al. Brain Res Mol Brain Res. .

Abstract

Most studies regarding altered gene expression after learning are performed using multi-trial tasks, which do not allow a clear discrimination of memory acquisition, consolidation and retrieval. We screened for candidate memory-modulated genes in the hippocampus at 3 and 24 h after one-trial inhibitory avoidance (IA) training, using a cDNA array containing 1176 genes. While 33 genes were modulated by training (respect to shocked-only animals), most of them were upregulated (27 genes) and only 6 were downregulated. To confirm and extend these findings, we performed RT-PCRs and analyzed differences in protein levels in rat hippocampus using immunoblot assays. We found several proteins upregulated 24 h after training: extracellular signal-regulated kinase ERK2, Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIalpha), Syntaxin 1a, c-fos and Homer 1a. The total level of none of these proteins were found to be altered when measured 3-h post-training. Several of the mRNAs corresponding to the upregulated proteins were changed at 3 h but not 24 h. Additionally, a number of other candidates were identified for the first time as modulated by learning. The results presented here suggest that single-trial tasks can expose previously unseen differences in dynamic regulation of gene expression after behavioral manipulations, both at the transcriptional and translational levels, and reveal a diversity of gene products modulated by this task, allowing deeper understanding of the molecular basis of memory formation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources