Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov 22;121(20):10026-40.
doi: 10.1063/1.1798992.

Broken-symmetry unrestricted hybrid density functional calculations on nickel dimer and nickel hydride

Affiliations

Broken-symmetry unrestricted hybrid density functional calculations on nickel dimer and nickel hydride

Cristian V Diaconu et al. J Chem Phys. .

Abstract

In the present work we investigate the adequacy of broken-symmetry unrestricted density functional theory for constructing the potential energy curve of nickel dimer and nickel hydride, as a model for larger bare and hydrogenated nickel cluster calculations. We use three hybrid functionals: the popular B3LYP, Becke's newest optimized functional Becke98, and the simple FSLYP functional (50% Hartree-Fock and 50% Slater exchange and LYP gradient-corrected correlation functional) with two basis sets: all-electron (AE) Wachters+f basis set and Stuttgart RSC effective core potential (ECP) and basis set. We find that, overall, the best agreement with experiment, comparable to that of the high-level CASPT2, is obtained with B3LYP/AE, closely followed by Becke98/AE and Becke98/ECP. FSLYP/AE and B3LYP/ECP give slightly worse agreement with experiment, and FSLYP/ECP is the only method among the ones we studied that gives an unacceptably large error, underestimating the dissociation energy of Ni(2) by 28%, and being in the largest disagreement with the experiment and the other theoretical predictions. We also find that for Ni(2), the spin projection for the broken-symmetry unrestricted singlet states changes the ordering of the states, but the splittings are less than 10 meV. All our calculations predict a deltadelta-hole ground state for Ni(2) and delta-hole ground state for NiH. Upon spin projection of the singlet state of Ni(2), almost all of our calculations: Becke98 and FSLYP both AE and ECP and B3LYP/AE predict (1)(d(A)(x(2)-y(2)d(B)(x(2)-y(2)) or (1)(d(A)(xy) (d)(B)(xy)) ground state, which is a mixture of (1)Sigma(g) (+) and (1)Gamma(g). B3LYP/ECP predicts a (3)(d(A)(x(2)-y(2))d(B)(xy) (mixture of (3)Sigma(g) (-) and (3)Gamma(u)) ground state virtually degenerate with the (1)(d(A)(x(2)-y(2)d(B)(x)(2)-y(2)/(1)(d(A)(xy)D(B)(xy) state. The doublet delta-hole ground state of NiH predicted by all our calculations is in agreement with the experimentally predicted (2)Delta ground state. For Ni(2), all our results are consistent with the experimentally predicted ground state of 0(g) (+) (a mixture of (1)Sigma(g) (+) and (3)Sigma(g) (-)) or 0(u) (-) (a mixture of (1)Sigma(u) (-) and (3)Sigma(u) (+)).

PubMed Disclaimer

LinkOut - more resources