Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct;92(3):199-208.
doi: 10.1016/j.jsbmb.2004.07.002.

Steroidogenic activities in MA-10 Leydig cells are differentially altered by cAMP and Müllerian inhibiting substance

Affiliations

Steroidogenic activities in MA-10 Leydig cells are differentially altered by cAMP and Müllerian inhibiting substance

Alexander M Trbovich et al. J Steroid Biochem Mol Biol. 2004 Oct.

Abstract

In addition to causing Müllerian duct regression in fetal males, Müllerian inhibiting substance (MIS) inhibits the expression of the bifunctional cytochrome P450, C17 hydroxylase/C(17-20) lyase (Cyp17), the enzyme that catalyzes the committed step in sex steroid synthesis. To investigate the paracrine effects of MIS on steroidogenic activity, we have performed assays with microsomes from mouse MA-10 Leydig cells. With microsomes from untreated MA-10 cells, progesterone was largely metabolized by 5alpha-reductase and subsequently converted by 3-keto steroid reductases to allopregnanolone and epiallopregnanolone. Addition of cAMP to the cells shifted microsomal steroid production to the Cyp17 product androstenedione and its 5alpha,3beta-reduced form, epiandrosterone. Microsomes from MIS-treated cells were less active with the progesterone substrate than those of untreated cells but co-treatment of the cells with both MIS and cAMP mitigated the cAMP-induced shift of the microsomes to androstenedione production. Quantitative analyses of steroid production by Cyp17 showed that cAMP decreased the amount of 17-hydroxyprogesterone produced relative to the androstenedione, suggesting that cAMP signaling lowers the efficiency of the Cyp17 hydroxylase activity or else increases the efficiency of its lyase activity. Addition of MIS to the cAMP-treated cells partially reversed this effect, as well. These results indicate that cAMP induces MA-10 cells to switch from producing 5alpha-reduced progesterone metabolites to producing androstenedione and its metabolites by increasing Cyp17 expression and its relative lyase activity, both of which are inhibited by MIS.

PubMed Disclaimer

Publication types

LinkOut - more resources