Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Dec 15;144(2-3):203-14.
doi: 10.1016/j.resp.2004.02.013.

CO2 transduction mechanisms in avian intrapulmonary chemoreceptors: experiments and models

Affiliations
Review

CO2 transduction mechanisms in avian intrapulmonary chemoreceptors: experiments and models

Steven C Hempleman et al. Respir Physiol Neurobiol. .

Abstract

Intrapulmonary chemoreceptors (IPC) are neurons that sense tonic and phasic CO2 stimuli in the lungs of birds and diapsid reptiles. IPC are different from most other vertebrate respiratory CO2 receptors because: (1) they are stimulated by low PCO2 and inhibited by high PCO2, (2) they have extremely rapid response characteristics, (3) their CO2 sensitivity is nearly abolished by intracellular inhibitors of carbonic anhydrase, and (4) their CO2 sensitivity is strongly depressed by inhibiting Na+/H+ antiport exchange. Experimental evidence suggests that IPC respond to intracellular pH, not CO2 directly, and that intracellular pH and IPC discharge are determined by a kinetic balance between CO2 hydration/dehydration rates, transmembrane acid/base exchange rates, and intracellular buffering. We review experimental evidence for and against various mechanisms of IPC CO2 chemotransduction, present a conceptual and mathematical model of the proposed mechanisms, and compare this model to CO2 transduction in other respiratory chemoreceptors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources