A hierarchical clustering algorithm for MIMD architecture
- PMID: 15556483
- DOI: 10.1016/j.compbiolchem.2004.09.002
A hierarchical clustering algorithm for MIMD architecture
Abstract
Hierarchical clustering is the most often used method for grouping similar patterns of gene expression data. A fundamental problem with existing implementations of this clustering method is the inability to handle large data sets within a reasonable time and memory resources. We propose a parallelized algorithm of hierarchical clustering to solve this problem. Our implementation on a multiple instruction multiple data (MIMD) architecture shows considerable reduction in computational time and inter-node communication overhead, especially for large data sets. We use the standard message passing library, message passing interface (MPI) for any MIMD systems.
Similar articles
-
Mass distributed clustering: a new algorithm for repeated measurements in gene expression data.Genome Inform. 2005;16(2):183-94. Genome Inform. 2005. PMID: 16901101
-
Recent advances in gene expression data clustering: a case study with comparative results.Genet Mol Res. 2005 Sep 30;4(3):514-24. Genet Mol Res. 2005. PMID: 16342036
-
Clustering short time series gene expression data.Bioinformatics. 2005 Jun;21 Suppl 1:i159-68. doi: 10.1093/bioinformatics/bti1022. Bioinformatics. 2005. PMID: 15961453
-
Overview on techniques in cluster analysis.Methods Mol Biol. 2010;593:81-107. doi: 10.1007/978-1-60327-194-3_5. Methods Mol Biol. 2010. PMID: 19957146 Review.
-
Clustering algorithms in biomedical research: a review.IEEE Rev Biomed Eng. 2010;3:120-54. doi: 10.1109/RBME.2010.2083647. IEEE Rev Biomed Eng. 2010. PMID: 22275205 Review.
Cited by
-
In silico modelling of hormone response elements.BMC Bioinformatics. 2006 Dec 12;7 Suppl 4(Suppl 4):S27. doi: 10.1186/1471-2105-7-S4-S27. BMC Bioinformatics. 2006. PMID: 17217520 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources