Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov;75(11):941-6.

Eccentric exercise prior to hindlimb unloading attenuated reloading muscle damage in rats

Affiliations
  • PMID: 15558992

Eccentric exercise prior to hindlimb unloading attenuated reloading muscle damage in rats

Rhonda D Prisby et al. Aviat Space Environ Med. 2004 Nov.

Abstract

Introduction: Antigravity muscles that are reloaded subsequent to hindlimb unloading (HU) are prone to injury. Similarities exist between muscle damage elicited from HU and subsequent reloading and damage induced by eccentric exercise (EE). Conditioning bouts of EE reduce muscle damage following a repeat bout of EE. Since damage to reloaded skeletal muscle is comparable to damage observed after EE, the mechanisms of damage are presumably similar. Therefore, EE prior to HU may attenuate reloading muscle damage. This study evaluated the effects of prior EE on rat soleus muscles (SOL) subsequent to 7 d of HU and 16-19 h of reloading.

Methods: Sprague Dawley rats were randomly assigned to the following groups: eccentric exercise + hindlimb unloading + reloading (EEHUR; n = 9); hindlimb unloading + reloading (HUR; n = 10); eccentric exercise (EE; n = 12), or control (CON; n = 12). The exercise protocol was performed 5 d x wk(-1) for 2 wks followed by HU and reloading.

Results: Fiber areas were lower in both suspended groups vs. the EE and CON groups. There was no difference in percent interstitial area among groups. However, percent myofibrillar damage was higher in the HUR group vs. all other groups. Further, glucose-6-phospate dehydrogenase activity, an indicator of muscle damage, was higher in the HUR group compared with the EE and CON groups.

Conclusion: These results provide some evidence that prior EE reduced muscle damage subsequent to HU and reloading. Therefore, EE may prove effective in minimizing recovery time in individuals suffering from muscle damage following periods of bed rest and spaceflight.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources