Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Nov;271(22):4361-5.
doi: 10.1111/j.1432-1033.2004.04421.x.

The Thermoplasma acidophilum Lon protease has a Ser-Lys dyad active site

Affiliations
Free article
Comparative Study

The Thermoplasma acidophilum Lon protease has a Ser-Lys dyad active site

Henrike Besche et al. Eur J Biochem. 2004 Nov.
Free article

Abstract

A gene with significant similarity to bacterial Lon proteases was identified during the sequencing of the genome of the thermoacidophilic archaeon Thermoplasma acidophilum. Protein sequence comparison revealed that Thermoplasma Lon protease (TaLon) is more similar to the LonB proteases restricted to Gram-positive bacteria than to the widely distributed bacterial LonA. However, the active site residues of the protease and ATPase domain are highly conserved in all Lon proteases. Using site-directed mutagenesis we show here that TaLon and EcLon, and probably all other Lon proteases, contain a Ser-Lys dyad active site. The TaLon active site mutants were fully assembled and, similar to TaLon wild-type, displayed an apparent molar mass of 430 kDa upon gelfiltration. This would be consistent with a hexameric complex and indeed electron micrographs of TaLon revealed ring-shaped particles, although of unknown symmetry. Comparison of the ATPase activity of Lon wild-type from Thermoplasma or Escherichia coli with respective protease active site mutants revealed differences in Km and V values. This suggests that in the course of protein degradation by wild-type Lon the protease domain might influence the activity of the ATPase domain.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources