Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004;129(4):1031-44.
doi: 10.1016/j.neuroscience.2004.06.045.

Water transport in the brain: role of cotransporters

Affiliations
Review

Water transport in the brain: role of cotransporters

N MacAulay et al. Neuroscience. 2004.

Abstract

It is generally accepted that cotransporters transport water in addition to their normal substrates, although the precise mechanism is debated; both active and passive modes of transport have been suggested. The magnitude of the water flux mediated by cotransporters may well be significant: both the number of cotransporters per cell and the unit water permeability are high. For example, the Na(+)-glutamate cotransporter (EAAT1) has a unit water permeability one tenth of that of aquaporin (AQP) 1. Cotransporters are widely distributed in the brain and participate in several vital functions: inorganic ions are transported by K(+)-Cl(-) and Na(+)-K(+)-Cl(-) cotransporters, neurotransmitters are reabsorbed from the synaptic cleft by Na(+)-dependent cotransporters located on glial cells and neurons, and metabolites such as lactate are removed from the extracellular space by means of H(+)-lactate cotransporters. We have previously determined water transport capacities for these cotransporters in model systems (Xenopus oocytes, cell cultures, and in vitro preparations), and will discuss their role in water homeostasis of the astroglial cell under both normo- and pathophysiologal situations. Astroglia is a polarized cell with EAAT localized at the end facing the neuropil while the end abutting the circulation is rich in AQP4. The water transport properties of EAAT suggest a new model for volume homeostasis of the extracellular space during neural activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources