Q-ball imaging
- PMID: 15562495
- DOI: 10.1002/mrm.20279
Q-ball imaging
Abstract
Magnetic resonance diffusion tensor imaging (DTI) provides a powerful tool for mapping neural histoarchitecture in vivo. However, DTI can only resolve a single fiber orientation within each imaging voxel due to the constraints of the tensor model. For example, DTI cannot resolve fibers crossing, bending, or twisting within an individual voxel. Intravoxel fiber crossing can be resolved using q-space diffusion imaging, but q-space imaging requires large pulsed field gradients and time-intensive sampling. It is also possible to resolve intravoxel fiber crossing using mixture model decomposition of the high angular resolution diffusion imaging (HARDI) signal, but mixture modeling requires a model of the underlying diffusion process.Recently, it has been shown that the HARDI signal can be reconstructed model-independently using a spherical tomographic inversion called the Funk-Radon transform, also known as the spherical Radon transform. The resulting imaging method, termed q-ball imaging, can resolve multiple intravoxel fiber orientations and does not require any assumptions on the diffusion process such as Gaussianity or multi-Gaussianity. The present paper reviews the theory of q-ball imaging and describes a simple linear matrix formulation for the q-ball reconstruction based on spherical radial basis function interpolation. Open aspects of the q-ball reconstruction algorithm are discussed.
(c) 2004 Wiley-Liss, Inc.
Similar articles
-
Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values.Neuroimage. 2015 Apr 1;109:341-56. doi: 10.1016/j.neuroimage.2014.12.060. Epub 2014 Dec 30. Neuroimage. 2015. PMID: 25555998 Free PMC article.
-
Evaluation of the accuracy and angular resolution of q-ball imaging.Neuroimage. 2008 Aug 1;42(1):262-71. doi: 10.1016/j.neuroimage.2008.03.053. Epub 2008 Apr 9. Neuroimage. 2008. PMID: 18502152
-
High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity.Magn Reson Med. 2002 Oct;48(4):577-82. doi: 10.1002/mrm.10268. Magn Reson Med. 2002. PMID: 12353272
-
Multiple-fiber reconstruction algorithms for diffusion MRI.Ann N Y Acad Sci. 2005 Dec;1064:113-33. doi: 10.1196/annals.1340.018. Ann N Y Acad Sci. 2005. PMID: 16394152 Review.
-
Diffusion-Weighted Imaging: Recent Advances and Applications.Semin Ultrasound CT MR. 2021 Oct;42(5):490-506. doi: 10.1053/j.sult.2021.07.006. Epub 2021 Aug 1. Semin Ultrasound CT MR. 2021. PMID: 34537117 Review.
Cited by
-
Spatial Mapping of Translational Diffusion Coefficients Using Diffusion Tensor Imaging: A Mathematical Description.Concepts Magn Reson Part A Bridg Educ Res. 2014 Jan;43(1):1-27. doi: 10.1002/cmr.a.21288. Epub 2014 Apr 15. Concepts Magn Reson Part A Bridg Educ Res. 2014. PMID: 27441031 Free PMC article.
-
Semi-automated 3D segmentation of major tracts in the rat brain: comparing DTI with standard histological methods.Brain Struct Funct. 2014 Mar;219(2):539-50. doi: 10.1007/s00429-013-0516-8. Epub 2013 Mar 1. Brain Struct Funct. 2014. PMID: 23455647 Free PMC article.
-
Improved conspicuity and delineation of high-grade primary and metastatic brain tumors using "restriction spectrum imaging": quantitative comparison with high B-value DWI and ADC.AJNR Am J Neuroradiol. 2013 May;34(5):958-64, S1. doi: 10.3174/ajnr.A3327. Epub 2012 Nov 8. AJNR Am J Neuroradiol. 2013. PMID: 23139079 Free PMC article.
-
Multiband accelerated spin-echo echo planar imaging with reduced peak RF power using time-shifted RF pulses.Magn Reson Med. 2013 May;69(5):1261-7. doi: 10.1002/mrm.24719. Epub 2013 Mar 6. Magn Reson Med. 2013. PMID: 23468087 Free PMC article.
-
Sparse and optimal acquisition design for diffusion MRI and beyond.Med Phys. 2012 May;39(5):2499-511. doi: 10.1118/1.3700166. Med Phys. 2012. PMID: 22559620 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources