Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr;288(4):H1641-51.
doi: 10.1152/ajpheart.00181.2004. Epub 2004 Nov 24.

Assessment of left ventricular diastolic suction in dogs using wave-intensity analysis

Affiliations
Free article

Assessment of left ventricular diastolic suction in dogs using wave-intensity analysis

Zhibin Wang et al. Am J Physiol Heart Circ Physiol. 2005 Apr.
Free article

Erratum in

  • Am J Physiol Heart Circ Physiol. 2005 Jun;288(6):H3017

Abstract

Two apparently different types of mechanisms have emerged to explain diastolic suction (DS), that property of the left ventricle (LV) that tends to cause it to refill itself during early diastole independent of any force from the left atrium (LA). By means of the first mechanism, DS depends on decreased elastance [e.g., the relaxation time constant (tau)] and, by the second, end-systolic volume (V(LVES)). We used wave-intensity analysis (WIA) to measure the total energy transported by the backward expansion wave (I(W-)) during LV relaxation in an attempt to reconcile these mechanisms. In six anesthetized, open-chest dogs, we measured aortic, LV (P(LV)), LA (P(LA)), and pericardial pressures and LV volume by orthogonal ultrasonic crystals. Mitral velocity was measured by Doppler echocardiography, and aortic velocity was measured by an ultrasonic flow probe. Heart rate was controlled by pacing, V(LVES) by volume loading, and tau by isoproterenol or esmolol administration. I(W-) was found to be inversely related to tau and V(LVES). Our measure of DS, the energy remaining after mitral valve opening, I(W-DS), was also found to be inversely related to tau and V(LVES) and was approximately 10% of the total "aspirating" energy generated by LV relaxation (i.e., I(W-)). The size of the Doppler (early filling) E wave depended on I(W-DS) in addition to I(W+), the energy associated with LA decompression. We conclude that the energy of the backward-going wave generated by the LV during relaxation depends on both the rate at which elastance decreases (i.e., tau) and V(LVES). WIA provides a new approach for assessing DS and reconciles those two previously proposed mechanisms. The E wave depends on DS in addition to LA decompression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources