Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Dec;37(6):1185-207.
doi: 10.1016/j.otc.2004.05.003.

Olfactory loss as a result of toxic exposure

Affiliations
Review

Olfactory loss as a result of toxic exposure

Urmen D Upadhyay et al. Otolaryngol Clin North Am. 2004 Dec.

Abstract

Olfactory loss can occur through accidental exposure, poor industrial hygiene, or exposure to low levels of toxins in the ambient air over long periods. This loss can lead to transient olfactory disorders, irreversible anosmia, temporary olfactory fatigue, or industrial anosmia. Inevitably, a practicing otolaryngologist will encounter a patient with complaints of decreased smell and taste that initially may be difficult to diagnose and treat. Much of the challenge in evaluating a patient with disturbances of olfaction is in obtaining adequate quantitative measurements of sensory dysfunction and identifying a source for the olfactory loss. Although there is no particular test for environmental toxins as a source of olfactory loss, an accurate cause can be determined by obtaining a careful, detailed history. A significant exposure history and lack of more common causes of olfactory loss strengthens an argument for environmental toxins as an etiology. Unfortunately, no available treatments can reverse permanent damage caused by toxic exposure, but removal from the source of toxins may allow for repair of the olfactory system and return of normal function, especially in acute exposures. Despite the increasing number of studies investigating toxic exposure on olfactory function, these effects are understood poorly. With continued study of human exposure to these substances and the use of animal models, the mechanisms by which damage occurs will be understood better and new approaches for diagnosis and treatment will be developed. Furthermore, with increasing regulations of occupational environments and stricter policies on industrial air pollution, olfactory dysfunction secondary to toxicity should become less prevalent.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources