Genetic screen for monitoring severe acute respiratory syndrome coronavirus 3C-like protease
- PMID: 15564515
- PMCID: PMC533918
- DOI: 10.1128/JVI.78.24.14057-14061.2004
Genetic screen for monitoring severe acute respiratory syndrome coronavirus 3C-like protease
Abstract
A novel coronavirus (SCoV) is the etiological agent of severe acute respiratory syndrome. Site-specific proteolysis plays a critical role in regulating a number of cellular and viral processes. Since the main protease of SCoV, also termed 3C-like protease, is an attractive target for drug therapy, we have developed a safe, simple, and rapid genetic screen assay to monitor the activity of the SCoV 3C-like protease. This genetic system is based on the bacteriophage lambda regulatory circuit, in which the viral repressor cI is specifically cleaved to initiate the lysogenic-to-lytic switch. A specific target for the SCoV 3C-like protease, P1/P2 (SAVLQ/SGFRK), was inserted into the lambda phage cI repressor. The target specificity of the SCoV P1/P2 repressor was evaluated by coexpression of this repressor with a chemically synthesized SCoV 3C-like protease gene construct. Upon infection of Escherichia coli cells containing the two plasmids encoding the cI. SCoV P1/P2-cro and the beta-galactosidase-SCoV 3C-like protease constructs, lambda phage replicated up to 2,000-fold more efficiently than in cells that did not express the SCoV 3C-like protease. This simple and highly specific assay can be used to monitor the activity of the SCoV 3C-like protease, and it has the potential to be used for screening specific inhibitors.
Figures




Similar articles
-
Genetic screen for monitoring hepatitis C virus NS3 serine protease activity.Antimicrob Agents Chemother. 2003 May;47(5):1760-5. doi: 10.1128/AAC.47.5.1760-1765.2003. Antimicrob Agents Chemother. 2003. PMID: 12709356 Free PMC article.
-
The newly emerged SARS-like coronavirus HCoV-EMC also has an "Achilles' heel": current effective inhibitor targeting a 3C-like protease.Protein Cell. 2013 Apr;4(4):248-50. doi: 10.1007/s13238-013-2841-3. Protein Cell. 2013. PMID: 23549610 Free PMC article. No abstract available.
-
Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins.FEBS J. 2013 May;280(9):2002-13. doi: 10.1111/febs.12222. Epub 2013 Mar 27. FEBS J. 2013. PMID: 23452147 Free PMC article.
-
The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds.Antiviral Res. 2015 Mar;115:21-38. doi: 10.1016/j.antiviral.2014.12.015. Epub 2014 Dec 29. Antiviral Res. 2015. PMID: 25554382 Free PMC article. Review.
-
Activation and maturation of SARS-CoV main protease.Protein Cell. 2011 Apr;2(4):282-90. doi: 10.1007/s13238-011-1034-1. Epub 2011 Apr 28. Protein Cell. 2011. PMID: 21533772 Free PMC article. Review.
Cited by
-
Exosomal mediated signal transduction through artificial microRNA (amiRNA): A potential target for inhibition of SARS-CoV-2.Cell Signal. 2022 Jul;95:110334. doi: 10.1016/j.cellsig.2022.110334. Epub 2022 Apr 21. Cell Signal. 2022. PMID: 35461900 Free PMC article. Review.
-
Fitness landscape of human immunodeficiency virus type 1 protease quasispecies.J Virol. 2007 Mar;81(5):2485-96. doi: 10.1128/JVI.01594-06. Epub 2006 Dec 6. J Virol. 2007. PMID: 17151104 Free PMC article.
-
Sequence homology required by human immunodeficiency virus type 1 to escape from short interfering RNAs.J Virol. 2006 Jan;80(2):571-7. doi: 10.1128/JVI.80.2.571-577.2006. J Virol. 2006. PMID: 16378959 Free PMC article.
-
The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain.FEBS J. 2006 Mar;273(5):1035-45. doi: 10.1111/j.1742-4658.2006.05130.x. FEBS J. 2006. PMID: 16478476 Free PMC article.
-
HIV-1 Protease Evolvability Is Affected by Synonymous Nucleotide Recoding.J Virol. 2018 Jul 31;92(16):e00777-18. doi: 10.1128/JVI.00777-18. Print 2018 Aug 15. J Virol. 2018. PMID: 29875244 Free PMC article.
References
-
- Anand, K., J. Ziebuhr, P. Wadhwani, J. R. Mesters, and R. Hilgenfeld. 2003. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300:1763-1767. - PubMed
-
- Cabana, M., G. Fernandez, M. Parera, B. Clotet, and M. A. Martinez. 2002. Catalytic efficiency and phenotype of HIV-1 proteases encoding single critical resistance substitutions. Virology 300:71-78. - PubMed
-
- Cello, J., A. V. Paul, and E. Wimmer. 2002. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297:1016-1018. - PubMed
-
- Drosten, C., S. Gunther, W. Preiser, S. van der Werf, H. R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R. A. Fouchier, A. Berger, A. M. Burguiere, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, J. C. Manuguerra, S. Muller, V. Rickerts, M. Sturmer, S. Vieth, H. D. Klenk, A. D. Osterhaus, H. Schmitz, and H. W. Doerr. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348:1967-1976. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources