Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana
- PMID: 15565108
- DOI: 10.1038/ng1478
Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana
Abstract
MicroRNAs (miRNAs) in plants and animals function as post-transcriptional regulators of target genes, many of which are involved in multicellular development. miRNAs guide effector complexes to target mRNAs through base-pair complementarity, facilitating site-specific cleavage or translational repression. Biogenesis of miRNAs involves nucleolytic processing of a precursor transcript with extensive foldback structure. Here, we provide evidence that genes encoding miRNAs in plants originated by inverted duplication of target gene sequences. Several recently evolved genes encoding miRNAs in Arabidopsis thaliana and other small RNA-generating loci possess the hallmarks of inverted duplication events that formed the arms on each side of their respective foldback precursors. We propose a model for miRNA evolution that suggests a mechanism for de novo generation of new miRNA genes with unique target specificities.
Comment in
-
Shaping small RNAs in plants by gene duplication.Nat Genet. 2004 Dec;36(12):1245-6. doi: 10.1038/ng1204-1245. Nat Genet. 2004. PMID: 15565102 No abstract available.
Similar articles
-
Evolution of Arabidopsis thaliana microRNAs from random sequences.RNA. 2008 Dec;14(12):2455-9. doi: 10.1261/rna.1149408. Epub 2008 Oct 24. RNA. 2008. PMID: 18952822 Free PMC article.
-
Evolution of microRNA genes in Oryza sativa and Arabidopsis thaliana: an update of the inverted duplication model.PLoS One. 2011;6(12):e28073. doi: 10.1371/journal.pone.0028073. Epub 2011 Dec 14. PLoS One. 2011. PMID: 22194805 Free PMC article.
-
Independent origin of MIRNA genes controlling homologous target genes by partial inverted duplication of antisense-transcribed sequences.Plant J. 2020 Jan;101(2):401-419. doi: 10.1111/tpj.14550. Epub 2019 Nov 26. Plant J. 2020. PMID: 31571291
-
Evolution of plant microRNA gene families.Cell Res. 2007 Mar;17(3):212-8. doi: 10.1038/sj.cr.7310113. Cell Res. 2007. PMID: 17130846 Review.
-
The evolution of microRNAs in plants.Curr Opin Plant Biol. 2017 Feb;35:61-67. doi: 10.1016/j.pbi.2016.11.006. Epub 2016 Nov 22. Curr Opin Plant Biol. 2017. PMID: 27886593 Free PMC article. Review.
Cited by
-
Widespread dynamic DNA methylation in response to biotic stress.Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):E2183-91. doi: 10.1073/pnas.1209329109. Epub 2012 Jun 25. Proc Natl Acad Sci U S A. 2012. PMID: 22733782 Free PMC article.
-
The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes.RNA Biol. 2013;10(9):1469-76. doi: 10.4161/rna.25568. Epub 2013 Jul 9. RNA Biol. 2013. PMID: 23872480 Free PMC article. Review.
-
Evolutionary Transitions of MicroRNA-Target Pairs.Genome Biol Evol. 2016 Jun 4;8(5):1621-33. doi: 10.1093/gbe/evw092. Genome Biol Evol. 2016. PMID: 27189995 Free PMC article.
-
Computational evidence for hundreds of non-conserved plant microRNAs.BMC Genomics. 2005 Sep 13;6:119. doi: 10.1186/1471-2164-6-119. BMC Genomics. 2005. PMID: 16159385 Free PMC article.
-
Arabidopsis RNA processing body components LSM1 and DCP5 aid in the evasion of translational repression during Cauliflower mosaic virus infection.Plant Cell. 2022 Jul 30;34(8):3128-3147. doi: 10.1093/plcell/koac132. Plant Cell. 2022. PMID: 35511183 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases