Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec;40(6):1304-11.
doi: 10.1002/hep.20452.

Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice

Affiliations

Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice

Isao Sakaida et al. Hepatology. 2004 Dec.

Abstract

We investigated the effect of bone marrow cell (BMC) transplantation on established liver fibrosis. BMCs of green fluorescent protein (GFP) mice were transplanted into 4-week carbon tetrachloride (CCl4)-treated C57BL6 mice through the tail vein, and the mice were treated for 4 more weeks with CCl4 (total, 8 weeks). Sirius red and GFP staining clearly indicated migrated BMCs existing along with fibers, with strong expression of matrix metalloproteinase (MMP)-9 shown by anti-MMP-9 antibodies and in situ hybridization. Double fluorescent immunohistochemistry showed the expression of MMP-9 on the GFP-positive cell surface. Film in situ zymographic analysis revealed strong gelatinolytic activity in the periportal area coinciding with the location of MMP-9-positive BMCs. Four weeks after BMC transplantation, mice had significantly reduced liver fibrosis, as assessed by hydroxyproline content of the livers, compared to that of mice treated with CCl4 alone. Subpopulation of Liv8-negative BMCs was responsible for this fibrolytic effect. In conclusion, mice with BMC transplants with continuous CCl4 injection had reduced liver fibrosis and a significantly improved survival rate after BMC transplantation compared with mice treated with CCl4 alone. This finding introduces a new concept for the therapy of liver fibrosis.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances

LinkOut - more resources