Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004:(56):193-204.

Spatial and temporal control of nuclear envelope assembly by Ran GTPase

Affiliations
  • PMID: 15565882
Review

Spatial and temporal control of nuclear envelope assembly by Ran GTPase

Paul R Clarke et al. Symp Soc Exp Biol. 2004.

Abstract

Using evidence derived primarily from studies using Xenopus egg extracts, a model for the role of Ran in multiple stages during NE assembly can be proposed (Figure 2). Ran is concentrated on chromatin prior to NE assembly and recruits RCC1 that generates Ran-GTP locally. Recruitment of RCC1 to chromatin may be a specialized mechanism to initiate NE assembly following fertilization of the egg, whereas in somatic cells, RCC1 may be present on chromatin throughout mitosis. Ran-GTP recruits vesicles to the surface of chromatin, and promotes vesicle fusion to form the double membrane of the NE. Ran-GTP may recruit membrane vesicles to chromatin through binding to integral membrane proteins through importin-beta. A transient complex would be formed between Ran-GTP, importin-beta and the target protein, which would be released locally to promote assembly of a precursor complex. GTP hydrolysis by Ran would release importin-beta, but may also play a role in vesicle fusion. Ran-GTP also promotes NPC assembly by releasing nucleoporins such as Nup107 from inhibitory complexes with importin-beta. In vertebrate cells undergoing mitosis, the majority of Ran molecules are excluded from the chromosomes and dispersed into the cytoplasm. Relocalization of Ran to chromatin at the end of mitosis may co-ordinate the initiation of NE assembly with disassembly of the mitotic spindle. The function of Ran in this transition is likely to be coupled to changes in the activity of cyclin-dependent protein kinases and other activities that control the progression of the cell cycle. Thus, changes in the localization of Ran and its regulators provide temporal and spatial control of NE assembly at the end of mitosis.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources