Advances in the diagnosis of respiratory virus infections
- PMID: 15566867
- PMCID: PMC7135643
- DOI: 10.1016/0928-0197(96)00210-3
Advances in the diagnosis of respiratory virus infections
Abstract
Background: Advances have been made in selecting sensitive cell lines for isolation, in early detection of respiratory virus growth in cells by rapid culture assays, in production of monoclonal antibodies to improve many tests such as immunofluorescence detection of virus antigens in nasopharyngeal aspirates, in highly sensitive antigen detections by time-resolved fluoroimmunoassays (TR-FIAs) and biotin-enzyme immunoassays (BIOTH-E), and, finally, in the polymerase chain reaction (PCR) detection of respiratory virus DNA or RNA in clinical specimens. All of these advances have contributed to new or improved possibilities for the diagnosis of respiratory virus infections.
Objectives and study design: This review summarizes our experiences during the last 15 years in the development of diagnostic tests for respiratory virus infections, and in use of these tests in daily diagnostic work and in epidemiological studies.
Results: Immunofluorescence tests based on monoclonal antibodies, all-monoclonal TR-FIAs, and biotin-enzyme immunoassays (EIAs) have about the same sensitivities and specificities. They compare well with the sensitivity of virus culture. PCR followed by liquid-phase hybridization is a sensitive method for detecting adenovirus DNA and enterovirus and rhinovirus RNA in clinical specimens. IgG EIA on paired acute and convalescent phase sera is the most sensitive serological test for respiratory virus infections and is a valuable reference method when evaluating the sensitivity of new diagnostic tests. The IgG avidity test can distinguish primary infections from re-infections at least in respiratory syncytial virus (RSV) infections. IgM antibody assays, on the other hand, had low sensitivities in our studies.
Conclusions: The choice of diagnostic methods for respiratory virus infections depends on the type and location of the laboratory, the number of specimens tested, and the previous experience of the laboratory. Virus culture, whenever possible, should be the basic diagnostic method; the results, including identification of the virus, should be available no more than 24 h later than the results of rapid diagnostic tests. In small laboratories, especially in hospitals where specimen transportation is well organized, immunofluorescence may be the best choice for antigen detection with the provision that an experienced microscopist and a good UV microscope are available. If the laboratory receives a large number of specimens and has previous experience with EIAs, then biotin-EIAs or TR-FIAs may be the most practical techniques. Their advantages include the stability of the antigens in clinical samples since intact, exfoliated epithelial cells are not required, treatment of specimens is practical, testing of large numbers of specimens is possible, and reading the printed test result is less subjective than reading fluorescence microscopy. The larger role of PCR in the diagnosis of respiratory virus infections depends on future developments such as practical methods to extract DNA or RNA and to purify the extracts from nonspecific inhibitors, plus further improvements to minimize cross-contamination. Group-specific detection of enteroviruses and rhinoviruses is an example of the potential for PCR technology. In experienced laboratories. EIA IgG antibody tests should be available. Recombinant antigens may be a useful part of such assays.
Similar articles
-
Comparison of monoclonal biotin-avidin enzyme immunoassay and monoclonal time-resolved fluoroimmunoassay in detection of respiratory virus antigens.Clin Diagn Virol. 1995 May;3(4):351-9. doi: 10.1016/0928-0197(94)00050-5. Clin Diagn Virol. 1995. PMID: 15566816 Free PMC article.
-
Detection of respiratory syncytial virus, parainfluenzavirus 3, adenovirus and rhinovirus sequences in respiratory tract of infants by polymerase chain reaction and hybridization.Clin Diagn Virol. 1997 May;8(1):31-40. doi: 10.1016/s0928-0197(97)00060-3. Clin Diagn Virol. 1997. PMID: 9248656
-
Viral diagnosis by antigen detection techniques.Clin Diagn Virol. 1996 May;5(2-3):81-90. doi: 10.1016/0928-0197(96)00209-7. Clin Diagn Virol. 1996. PMID: 15566866
-
[Current techniques used for the diagnosis of respiratory virus infectious in intensive care units].Reanimation. 2007 Jun;16(3):200-209. doi: 10.1016/j.reaurg.2007.02.018. Epub 2007 Mar 15. Reanimation. 2007. PMID: 32362806 Free PMC article. Review. French.
-
[Problems and limitations of conventional and innovative methods for the diagnosis of Toxoplasmosis in humans and animals].Parassitologia. 2004 Jun;46(1-2):177-81. Parassitologia. 2004. PMID: 15305712 Review. Italian.
Cited by
-
Is there any specific association between respiratory viruses and bacteria in acute otitis media of young children?J Infect. 2006 Mar;52(3):181-7. doi: 10.1016/j.jinf.2005.05.012. Epub 2005 Jun 29. J Infect. 2006. PMID: 15992930 Free PMC article.
References
-
- Arstila P., Halonen P. Direct antigen detection. In: Lennette E.H., Halonen P., Murphy F.A., editors. Laboratory Diagnosis of Infectious Diseases Principles and Practice, Vol. II. Viral Rickettsial, and Chlamydial Diseases. Springer Verlag; New York: 1988. pp. 60–75.
LinkOut - more resources
Full Text Sources