Patterned supported lipid bilayers and monolayers on poly(dimethylsiloxane)
- PMID: 15568862
- DOI: 10.1021/la048450i
Patterned supported lipid bilayers and monolayers on poly(dimethylsiloxane)
Abstract
A simple and practical method for patterning supported lipid bilayers on poly(dimethylsiloxane) is presented. By using electron microscopy grids to laterally control the extent of plasma oxidation, the substrate is partitioned into regions of different hydrophilicities. Addition of vesicles then results in the spontaneous formation of lipid bilayers and monolayers side-by-side on the surface, separated by regions that contain no lipid and/or a region with adhering vesicles. By using millimeter-sized plastic masks we are able to control the formation of these lipid structures on macroscopic patches by simply varying the plasma-cleaning time. For the first time, we are able to influence, in a controlled fashion, the chemical composition of a substrate in such a way that it supports fluid lipid monolayers, rejects lipid adhesion, adsorbs intact lipid vesicles, or supports fluid bilayers.
Similar articles
-
Characterization of supported membranes on topographically patterned polymeric elastomers and their applications to microcontact printing.Langmuir. 2007 Dec 4;23(25):12645-54. doi: 10.1021/la701920v. Epub 2007 Nov 3. Langmuir. 2007. PMID: 17979304
-
Poly(dimethylsiloxane)-coated sensor devices for the formation of supported lipid bilayers and the subsequent study of membrane interactions.Langmuir. 2008 Oct 7;24(19):11268-75. doi: 10.1021/la800211v. Epub 2008 Aug 26. Langmuir. 2008. PMID: 18729340
-
Stable and fluid ethylphosphocholine membranes in a poly(dimethylsiloxane) microsensor for toxin detection in flooded waters.Anal Chem. 2005 May 1;77(9):2960-5. doi: 10.1021/ac0500481. Anal Chem. 2005. PMID: 15859616
-
Surface modification of poly(dimethylsiloxane) microchannels.Electrophoresis. 2003 Nov;24(21):3607-19. doi: 10.1002/elps.200305627. Electrophoresis. 2003. PMID: 14613185 Review.
-
Molecular transport and organization in supported lipid membranes.Curr Opin Chem Biol. 2000 Dec;4(6):704-9. doi: 10.1016/s1367-5931(00)00139-3. Curr Opin Chem Biol. 2000. PMID: 11102877 Review.
Cited by
-
Functional single-cell analysis of T-cell activation by supported lipid bilayer-tethered ligands on arrays of nanowells.Lab Chip. 2013 Jan 7;13(1):90-9. doi: 10.1039/c2lc40869d. Epub 2012 Oct 15. Lab Chip. 2013. PMID: 23070211 Free PMC article.
-
Snf7 spirals sense and alter membrane curvature.Nat Commun. 2022 Apr 21;13(1):2174. doi: 10.1038/s41467-022-29850-z. Nat Commun. 2022. PMID: 35449207 Free PMC article.
-
Capturing the nanoscale complexity of cellular membranes in supported lipid bilayers.J Struct Biol. 2009 Oct;168(1):3-10. doi: 10.1016/j.jsb.2009.05.006. Epub 2009 Jun 12. J Struct Biol. 2009. PMID: 19500676 Free PMC article. Review.
-
Dynamic mechanochemical feedback between curved membranes and BAR protein self-organization.Nat Commun. 2021 Nov 12;12(1):6550. doi: 10.1038/s41467-021-26591-3. Nat Commun. 2021. PMID: 34772909 Free PMC article.
-
Biodegradable, Tethered Lipid Bilayer-Microsphere Systems with Membrane-Integrated α-Helical Peptide Anchors.Langmuir. 2016 Apr 12;32(14):3470-5. doi: 10.1021/acs.langmuir.6b00008. Epub 2016 Mar 28. Langmuir. 2016. PMID: 26972467 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources