Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan 15;281(2):325-38.
doi: 10.1016/j.jcis.2004.08.142.

Assessing the effect of latex particle size and distribution on the rheological and adhesive properties of model waterborne acrylic pressure-sensitive adhesives films

Affiliations

Assessing the effect of latex particle size and distribution on the rheological and adhesive properties of model waterborne acrylic pressure-sensitive adhesives films

Marcelo do Amaral et al. J Colloid Interface Sci. .

Abstract

The adhesive and rheological properties of model acrylic pressure-sensitive adhesive (PSA) films prepared from high solid emulsions with different particle sizes and distributions have been investigated with a customized probe tack apparatus. For each emulsion, the monomer composition and gel content were kept constant but different average particle sizes and distributions were used. Adhesive films 100 microm thick were then prepared from these emulsions and their rheological properties in the linear regime and adhesive properties were systematically characterized. Surprisingly, both the rheological and adhesive properties were found to be very dependent on the initial latex particle size distribution. A series of experiments were carried out to assess the adhesive properties of films made from blends of small- and large-particle-size latexes. Using the probe tack test, a maximum in adhesion energy of the dry films was found for 60% of small particles in the blend, a composition clearly different from that giving a minimum viscosity of the latex implying that optimizing for properties may not be equivalent to optimizing for processing in these adhesive applications. Finally, the adhesive properties of two multimodal latexes with different particle size distributions were investigated. Both gave significantly higher adhesion energies and clear evidence of a fibrillar detachment process. This important result suggests that the spatial distribution of gel domains in the dry film and the molecular connectivity between those gel domains also play an important role in controlling its adhesive properties.

PubMed Disclaimer

LinkOut - more resources