Bidirectional activity-dependent morphological plasticity in hippocampal neurons
- PMID: 15572108
- DOI: 10.1016/j.neuron.2004.11.016
Bidirectional activity-dependent morphological plasticity in hippocampal neurons
Abstract
Dendritic spines on pyramidal neurons receive the vast majority of excitatory input and are considered electrobiochemical processing units, integrating and compartmentalizing synaptic input. Following synaptic plasticity, spines can undergo morphological plasticity, which possibly forms the structural basis for long-term changes in neuronal circuitry. Here, we demonstrate that spines on CA1 pyramidal neurons from organotypic slice cultures show bidirectional activity-dependent morphological plasticity. Using two-photon time-lapse microscopy, we observed that low-frequency stimulation induced NMDA receptor-dependent spine retractions, whereas theta burst stimulation led to the formation of new spines. Moreover, without stimulation the number of spine retractions was on the same order of magnitude as the stimulus-induced spine gain or loss. Finally, we found that the ability of neurons to eliminate spines in an activity-dependent manner decreased with developmental age. Taken together, our data show that hippocampal neurons can undergo bidirectional morphological plasticity; spines are formed and eliminated in an activity-dependent way.
Similar articles
-
Synaptic modifications at the CA3-CA1 synapse after chronic AMPA receptor blockade in rat hippocampal slices.J Physiol. 2007 May 15;581(Pt 1):129-38. doi: 10.1113/jphysiol.2006.120550. Epub 2007 Feb 15. J Physiol. 2007. PMID: 17303644 Free PMC article.
-
Behaviorally evoked transient reorganization of hippocampal spines.Eur J Neurosci. 2009 Aug;30(4):560-6. doi: 10.1111/j.1460-9568.2009.06860.x. Epub 2009 Aug 10. Eur J Neurosci. 2009. PMID: 19674085
-
LTD induction causes morphological changes of presynaptic boutons and reduces their contacts with spines.Neuron. 2008 Nov 26;60(4):590-7. doi: 10.1016/j.neuron.2008.09.018. Neuron. 2008. PMID: 19038217
-
Structure and function of dendritic spines within the hippocampus.Ann Anat. 2009 Dec;191(6):518-31. doi: 10.1016/j.aanat.2009.08.006. Epub 2009 Sep 6. Ann Anat. 2009. PMID: 19783417 Review.
-
The spine apparatus, synaptopodin, and dendritic spine plasticity.Neuroscientist. 2010 Apr;16(2):125-31. doi: 10.1177/1073858409355829. Neuroscientist. 2010. PMID: 20400711 Review.
Cited by
-
Anesthetics fragment hippocampal network activity, alter spine dynamics, and affect memory consolidation.PLoS Biol. 2021 Apr 1;19(4):e3001146. doi: 10.1371/journal.pbio.3001146. eCollection 2021 Apr. PLoS Biol. 2021. PMID: 33793545 Free PMC article.
-
Synapses and dendritic spines as pathogenic targets in Alzheimer's disease.Neural Plast. 2012;2012:247150. doi: 10.1155/2012/247150. Epub 2012 Feb 6. Neural Plast. 2012. PMID: 22474602 Free PMC article. Review.
-
Independent expression of synaptic and morphological plasticity associated with long-term depression.J Neurosci. 2007 Nov 7;27(45):12419-29. doi: 10.1523/JNEUROSCI.2015-07.2007. J Neurosci. 2007. PMID: 17989307 Free PMC article.
-
Understanding the physical basis of memory: Molecular mechanisms of the engram.J Biol Chem. 2022 May;298(5):101866. doi: 10.1016/j.jbc.2022.101866. Epub 2022 Mar 26. J Biol Chem. 2022. PMID: 35346687 Free PMC article. Review.
-
Changes in synaptic morphology accompany actin signaling during LTP.J Neurosci. 2007 May 16;27(20):5363-72. doi: 10.1523/JNEUROSCI.0164-07.2007. J Neurosci. 2007. PMID: 17507558 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous