Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Nov;567(2-3):447-74.
doi: 10.1016/j.mrrev.2004.02.001.

Genotoxicity of tobacco smoke and tobacco smoke condensate: a review

Affiliations
Review

Genotoxicity of tobacco smoke and tobacco smoke condensate: a review

David M DeMarini. Mutat Res. 2004 Nov.

Abstract

This report reviews the literature on the genotoxicity of mainstream tobacco smoke and cigarette smoke condensate (CSC) published since 1985. CSC is genotoxic in nearly all systems in which it has been tested, with the base/neutral fractions being the most mutagenic. In rodents, cigarette smoke induces sister chromatid exchanges (SCEs) and micronuclei in bone marrow and lung cells. In humans, newborns of smoking mothers have elevated frequencies of HPRT mutants, translocations, and DNA strand breaks. Sperm of smokers have elevated frequencies of aneuploidy, DNA adducts, strand breaks, and oxidative damage. Smoking also produces mutagenic cervical mucus, micronuclei in cervical epithelial cells, and genotoxic amniotic fluid. These data suggest that tobacco smoke may be a human germ-cell mutagen. Tobacco smoke produces mutagenic urine, and it is a human somatic-cell mutagen, producing HPRT mutations, SCEs, microsatellite instability, and DNA damage in a variety of tissues. Of the 11 organ sites at which smoking causes cancer in humans, smoking-associated genotoxic effects have been found in all eight that have been examined thus far: oral/nasal, esophagus, pharynx/larynx, lung, pancreas, myeoloid organs, bladder/ureter, uterine cervix. Lung tumors of smokers contain a high frequency and unique spectrum of TP53 and KRAS mutations, reflective of the PAH (and possibly other) compounds in the smoke. Further studies are needed to clarify the modulation of the genotoxicity of tobacco smoke by various genetic polymorphisms. These data support a model of tobacco smoke carcinogenesis in which the components of tobacco smoke induce mutations that accumulate in a field of tissue that, through selection, drive the carcinogenic process. Most of the data reviewed here are from studies of human smokers. Thus, their relevance to humans cannot be denied, and their explanatory powers not easily dismissed. Tobacco smoke is now the most extreme example of a systemic human mutagen.

PubMed Disclaimer

LinkOut - more resources