Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 11;280(6):4415-21.
doi: 10.1074/jbc.M408246200. Epub 2004 Nov 30.

Lysophosphatidic acid-operated K+ channels

Affiliations
Free article

Lysophosphatidic acid-operated K+ channels

Jean Chemin et al. J Biol Chem. .
Free article

Erratum in

  • J Biol Chem. 2013 Sep 6;288(36):26178

Abstract

Lysophosphatidic acid (LPA) is an abundant cellular lipid with a myriad of biological effects. It plays an important role in both inter- and intracellular signaling. Activation of the LPA1-3 G-protein-coupled receptors explains many of the extracellular effects of LPA, including cell growth, differentiation, survival, and motility. However, LPA also acts intracellularly, activating the nuclear hormone receptor peroxisome proliferator-activated receptor-gamma that regulates gene transcription. This study shows that the novel subfamily of mechano-gated K2P channels comprising TREK-1, TREK-2, and TRAAK is strongly activated by intracellular LPA. The LPA-activated 2P domain K+ channels are intracellular ligand-gated K+ channels such as the Ca2+- or the ATP-sensitive K+ channels. LPA reversibly converts these mechano-gated, pH- and voltage-sensitive channels into leak conductances. Gating conversion of the 2P domain K+ channels by intracellular LPA represents a novel form of ion channel regulation. Thus, the TREK and TRAAK channels should be included in the LPA-associated physiological and disease states.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources