Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec;128(6):900-6.
doi: 10.1016/j.jtcvs.2004.07.036.

Experimental generation of a tissue-engineered functional and vascularized trachea

Affiliations
Free article

Experimental generation of a tissue-engineered functional and vascularized trachea

Thorsten Walles et al. J Thorac Cardiovasc Surg. 2004 Dec.
Free article

Abstract

Objective: We sought to grow in vitro functional smooth muscle cells, chondrocytes, and respiratory epithelium on a biologic, directly vascularized matrix as a scaffold for tracheal tissue engineering.

Methods: Ten- to 15-cm-long free jejunal segments with their own vascular pedicle were harvested and acellularized from donor pigs (n = 10) and used as a vascular matrix. Autologous costal chondrocytes, smooth muscle cells, and respiratory epithelium and endothelial progenitor cells were first cultured in vitro and then disseminated on the previously acellularized vascular matrix. Histologic, immunohistologic, molecular imaging, and Western blotting studies were then performed to assess cell viability.

Results: The endothelial progenitor cells re-endothelialized the matrix to such an extent that endothelial cell viability was uniformly documented through 2-(18F)-fluoro-2'-deoxyglucose positron emission tomography. This vascularized scaffold was seeded with functional (according to Western blot analysis) smooth muscle cells and successfully reseeded with viable ciliated respiratory epithelium. Chondrocyte growth and production of extracellular cartilaginous matrix was observed as soon as 2 weeks after their culture.

Conclusions: The fundamental elements for a bioartificial trachea were successfully engineered in vitro in a direct vascularized 10- to 15-cm-long bioartificial matrix. Future experimental work will be directed to give them a 3-dimensional aspect and a biomechanical profile of a functioning trachea.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources