Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Nov-Dec;20(6):1797-801.
doi: 10.1021/bp0496981.

Biodegradable PLGA microcarriers for injectable delivery of chondrocytes: effect of surface modification on cell attachment and function

Affiliations
Comparative Study

Biodegradable PLGA microcarriers for injectable delivery of chondrocytes: effect of surface modification on cell attachment and function

Ki Woo Chun et al. Biotechnol Prog. 2004 Nov-Dec.

Abstract

Poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres were prepared by an oil/water emulsion solvent evaporation method to use as an injectable microcarrier for cell delivery. Three different kinds of PLGA microspheres having hydrophobic, negatively charged, and positively charged surfaces were prepared. Hydrophobic and negatively charged PLGA microspheres were prepared by using terminally capped and uncapped PLGA polymer, respectively. Positively charged PLGA microspheres were prepared by blending PLGA with PLGA-g-poly(L-lysine) graft copolymer as a surface modifying agent. Bovine chondrocytes were cultured on the three PLGA microspheres under serum conditions to comparatively evaluate cell attachment, cell proliferation, and cell function with respect to surface properties. Positively charged PLGA microspheres showed the highest cell attachment, growth, and function compared to hydrophobic and negatively charged microspheres. Surface-modified PLGA microspheres can potentially be used as an injectable delivery system for cells into a tissue defect site.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources