Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec 2:4:31.
doi: 10.1186/1471-2210-4-31.

Characterisation of cytotoxicity and DNA damage induced by the topoisomerase II-directed bisdioxopiperazine anti-cancer agent ICRF-187 (dexrazoxane) in yeast and mammalian cells

Affiliations

Characterisation of cytotoxicity and DNA damage induced by the topoisomerase II-directed bisdioxopiperazine anti-cancer agent ICRF-187 (dexrazoxane) in yeast and mammalian cells

Lars H Jensen et al. BMC Pharmacol. .

Abstract

Background: Bisdioxopiperazine anti-cancer agents are inhibitors of eukaryotic DNA topoisomerase II, sequestering this protein as a non-covalent protein clamp on DNA. It has been suggested that such complexes on DNA represents a novel form of DNA damage to cells. In this report, we characterise the cytotoxicity and DNA damage induced by the bisdioxopiperazine ICRF-187 by a combination of genetic and molecular approaches. In addition, the well-established topoisomerase II poison m-AMSA is used for comparison.

Results: By utilizing a panel of Saccharomyces cerevisiae single-gene deletion strains, homologous recombination was identified as the most important DNA repair pathway determining the sensitivity towards ICRF-187. However, sensitivity towards m-AMSA depended much more on this pathway. In contrast, disrupting the post replication repair pathway only affected sensitivity towards m-AMSA. Homologous recombination (HR) defective irs1SF chinese hamster ovary (CHO) cells showed increased sensitivity towards ICRF-187, while their sensitivity towards m-AMSA was increased even more. Furthermore, complementation of the XRCC3 deficiency in irs1SF cells fully abrogated hypersensitivity towards both drugs. DNA-PKcs deficient V3-3 CHO cells having reduced levels of non-homologous end joining (NHEJ) showed slightly increased sensitivity to both drugs. While exposure of human small cell lung cancer (SCLC) OC-NYH cells to m-AMSA strongly induced gammaH2AX, exposure to ICRF-187 resulted in much less induction, showing that ICRF-187 generates fewer DNA double strand breaks than m-AMSA. Accordingly, when yeast cells were exposed to equitoxic concentrations of ICRF-187 and m-AMSA, the expression of DNA damage-inducible genes showed higher levels of induction after exposure to m-AMSA as compared to ICRF-187. Most importantly, ICRF-187 stimulated homologous recombination in SPD8 hamster lung fibroblast cells to lower levels than m-AMSA at all cytotoxicity levels tested, showing that the mechanism of action of bisdioxopiperazines differs from that of classical topoisomerase II poisons in mammalian cells.

Conclusion: Our results point to important differences in the mechanism of cytotoxicity induced by bisdioxopiperazines and topoisomerase II poisons, and suggest that bisdioxopiperazines kill cells by a combination of DNA break-related and DNA break-unrelated mechanisms.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Clonogenic sensitivity of PRR defective Δrad6 and Δrad18 yeast cells towards equitoxic doses of ICRF-187 and m-AMSA. A Δrad52 strain is included for comparison. Error-bars represent SEM of at least 3 experiments.
Figure 2
Figure 2
Analysis of gene expression by real time PCR. Real-time PCR was used to determine the expression of the DNA-damage inducible genes RNR3, HUG1, RAD51, and RAD54 by using the 2-ΔΔCt method. Gene expression was normalized to that of the actin gene ACT1. It can be seen that exposure of yeast cells to m-AMSA results in higher levels of induction of transcription of these four genes than exposure to ICRF-187 when the two drugs are applied at equitoxic concentrations. Error-bars represent SEM of two independent experiments each performed in duplicate.
Figure 3
Figure 3
Assessing the clonogenic sensitivity of HR and NHEJ deficient and proficient hamster cells towards ICRF-187 and m-AMSA. To determine the sensitivity of the four cell lines AA8 (wild-type), irs1SF (recombination defective caused by non-functional XRCC3), CXR3 (recombination proficient due to ectopic expression of human XRCC3), and V3-3 (defective in NHEJ due to non-functional DNA-PKcs) towards ICRF-187 and m-AMSA, a clonogenic assay with continuous drug exposure was used. Error-bars represent SEM of two independent experiments.
Figure 4
Figure 4
Assessing the effect of equitoxic concentrations of ICRF-187 and m-AMSA on the level of HR in SPD8 hamster cells. The SPD8 cell line has a defective hprt gene that can be repaired by HR. Panel A depicts the induction of HR induced by increasing concentrations of the two drugs. Panel B depicts the relative survival of cells exposed to similar concentrations of the two drugs. The data represented in Panel A and B was used to generate Panel C, where recombination frequency is plotted against the surviving fraction of cells. This data presentation allows a direct comparison of recombination levels at equitoxic concentrations of the two drugs. Representative data from one of three independent experiments is shown.
Figure 5
Figure 5
Assessing the effect of m-AMSA and ICRF-187 on γH2AX induction in human SCLC OC-NYH cells. To assess the level of DNA breaks in human cells after exposure to 10 μM m-AMSA and 1 mM ICRF-187 for increasing time points, total histones were isolated after incubation with the drugs. 10 μg of purified histones was then used in western blotting experiments. Panel A depicts a typical Western blot showing increased γH2AX induction with increasing drug incubation times. Panel B depicts fold γH2AX induction plotted against drug incubation time to analyse the kinetics of induction of DNA double strand breaks by the two drugs. Insert shows γH2AX induction from 0 to 2 hours for better resolution. Error-bars represent SEM of three independent experiments for ICRF-187 treatment and SEM of two independent experiments for m-AMSA treatment.

Similar articles

Cited by

References

    1. Wang JC. DNA topoisomerases. Annu Rev Biochem. 1996;65:635–692. doi: 10.1146/annurev.bi.65.070196.003223. - DOI - PubMed
    1. Roca J, Wang JC. DNA transport by a type II DNA topoisomerase: evidence in favor of a two-gate mechanism. Cell. 1994;77:609–616. doi: 10.1016/0092-8674(94)90222-4. - DOI - PubMed
    1. Wang JC. Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol. 2002;3:430–440. doi: 10.1038/nrm831. - DOI - PubMed
    1. Chen AY, Liu LF. DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol. 1994;34:191–218. doi: 10.1146/annurev.pa.34.040194.001203. - DOI - PubMed
    1. Andoh T, Ishida R. Catalytic inhibitors of DNA topoisomerase II. Biochim Biophys Acta. 1998;1400:155–171. - PubMed

LinkOut - more resources