Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May;26(14):2129-35.
doi: 10.1016/j.biomaterials.2004.05.035.

Self-gelling hydrogels based on oppositely charged dextran microspheres

Affiliations

Self-gelling hydrogels based on oppositely charged dextran microspheres

Sophie R Van Tomme et al. Biomaterials. 2005 May.

Abstract

This paper presents a novel self-gelling hydrogel potentially suitable for controlled drug delivery and tissue engineering. The macroscopic gels are obtained by mixing dispersions of oppositely charged crosslinked dextran microspheres. These microspheres in turn were prepared by crosslinking of dextran derivatized with hydroxyethyl methacrylate emulsified in an aqueous poly(ethylene glycol) solution. Negatively or positively charged microspheres were obtained by addition of methacrylic acid (MAA) or dimethylaminoethyl methacrylate (DMAEMA) to the polymerization mixture. Rheological analysis showed that instantaneous gelation occurred when equal volumes of oppositely charged microspheres, dispersed in buffer solutions of pH 7, were mixed. The shear modulus of the networks could be tailored from 30 to 6500 Pa by varying the water content of the system. Moreover, controlled strain and creep experiments showed that the formed networks were mainly elastic. Importantly for application of these systems, e.g. as controlled matrix of pharmaceutically active proteins, it was demonstrated that the hydrogel system has a reversible yield point, meaning that above a certain applied stress, the system starts to flow, whereas when the stress is removed, gel formation occurred. Further it was shown that the network structure could be broken by either a low pH or a high ionic strength of the medium. This demonstrates that the networks, formed at pH 7 and at low ionic strength, are held together by ionic interactions between the oppositely charged dextran microspheres. This system holds promise as injectable gels that are suitable for drug delivery and tissue engineering applications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources