Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;19(2):296-7.
doi: 10.1096/fj.04-2400fje. Epub 2004 Dec 2.

Phospholipid transfer protein (PLTP) deficiency reduces brain vitamin E content and increases anxiety in mice

Affiliations

Phospholipid transfer protein (PLTP) deficiency reduces brain vitamin E content and increases anxiety in mice

Catherine Desrumaux et al. FASEB J. 2005 Feb.

Abstract

Vitamin E supplementation constitutes a promising strategy in the prevention of neurodegenerative diseases. Here, we show that a phospholipid transfer protein (PLTP) is widely expressed in the brain where it appears to function as a transfer factor for alpha-tocopherol, the main isomer of vitamin E. PLTP deficiency results in significant depletion of brain alpha-tocopherol in both homozygous (-30.1%, P<0.0002) and heterozygous (-18.0%, P<0.05) PLTP knocked-out mice. Alpha-tocopherol depletion in PLTP-deficient homozygotes is associated with the elevation of lipofuscin (+25% and +450% increases in cortex and substantia nigra, respectively), cholesterol oxides (+54.5%, P<0.05), and cellular peroxides (+32.3%, P<0.01) in the brain. Complete PLTP deficiency in homozygotes is accompanied by increased anxiety as shown by fewer entries (8.3% vs. 44.4% in controls, P<0.01) and less time spent (1.7% vs. 41.3% in controls, P<0.05) in the open arms of an elevated plus-maze, in the absence of locomotor deterioration. Thus, the vitamin E transfer activity of PLTP appears to be a key process in preventing oxidative damage in the brain, and PLTP-deficient mice could be a new model of the contribution of oxidative brain injury in the etiology of neurodegenerative diseases.

PubMed Disclaimer

Publication types