Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Dec;4(4):457-67.
doi: 10.2174/1566523043346138.

Tissue-specific targeting for cardiovascular gene transfer. Potential vectors and future challenges

Affiliations
Review

Tissue-specific targeting for cardiovascular gene transfer. Potential vectors and future challenges

Caroline Beck et al. Curr Gene Ther. 2004 Dec.

Abstract

The introduction of genes to cardiovascular cells in vivo remains the major challenge for current gene therapy modalities. However, recent developments in retargeting adenoviral vectors are promising to improve transduction efficiency in the cardiovascular cells. After systemic application, most adenoviral vectors are trapped by the liver, hampering delivery to target cardiovascular tissues. Furthermore, a majority of vectors for vascular gene transfer utilizes strong heterologous viral promoters, such as CMV. A potential side effect related to the use of such vectors is the systemic organ toxicity resulting from unrestricted transgene expression. These vectors have the additional problem of being frequently shut-down in vivo. Therefore, both retargeting adenoviral vectors and the use of tissue-specific promoter-driven vectors offer an enhanced safety profile by reducing ectopic expression in vital organs including the liver and lung. However, the limiting factor for the use of tissue-specific promoters is the low-level of expression compared with their viral counterparts. Both the development of efficient and strong vectors using cell-specific regulatory elements and the production of therapeutic proteins at sufficient levels is urgently needed to inhibit vasculoproliferative disorders. This review will focus on some of the recent achievements in vector development relevant to the delivery of vascular gene therapies targeted to the vascular endothelium, smooth muscle cells and macrophages during arterial remodelling.

PubMed Disclaimer

Publication types