Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004;4(15):1623-35.
doi: 10.2174/1568026043387269.

Iron chelators in cancer chemotherapy

Affiliations
Review

Iron chelators in cancer chemotherapy

Joan L Buss et al. Curr Top Med Chem. 2004.

Abstract

Iron chelators may be of value as therapeutic agents in the treatment of cancer. They may act by depleting iron, a necessary nutrient, and limiting tumor growth. Alternatively or additionally, they may form redox-active metal complexes that cause oxidative stress via production of reactive oxygen species, damaging critical intracellular targets and thereby eliciting a cytotoxic response. Studies in vitro have evaluated the structure-activity relationships and mechanism of action of many classes of iron chelators, including desferrioxamine (DFO), pyridoxal isonicotinoyl hydrazone (PIH) analogs, desferrithiocin (DFT) analogs, tachpyridine, the heterocyclic carboxaldehyde thiosemicarbazones, and O-Trensox. Animal studies have confirmed the antitumor activity of several chelators. Dexrazoxane has been approved for use in combination with doxorubicin, and its effectiveness in allowing higher doses of doxorubicin to be administered is, in part, based on the interactions of both drugs with iron. Clinical trials of the antitumor activity of chelators have been largely limited to DFO, which has been extensively studied as a consequence of its approved use for treatment of secondary iron overload. While the modest antitumor effects of DFO are encouraging, it is likely that more effective iron chelators may be identified.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources