Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov-Dec;108(3-4):163-8.
doi: 10.1016/j.exppara.2004.08.006.

In vitro inhibition of beta-haematin formation, DNA interactions, antiplasmodial activity, and cytotoxicity of synthetic neocryptolepine derivatives

Affiliations

In vitro inhibition of beta-haematin formation, DNA interactions, antiplasmodial activity, and cytotoxicity of synthetic neocryptolepine derivatives

Sabine Van Miert et al. Exp Parasitol. 2004 Nov-Dec.

Abstract

Neocryptolepine, a minor alkaloid of Cryptolepis sanguinolenta, was investigated as a lead for new antiplasmodial agents, because of its lower cytotoxicity than cryptolepine, the major alkaloid. Synthetic 2- or 3-substituted neocryptolepine derivatives were evaluated for their biological activity. In addition to the antiplasmodial activity (Plasmodium falciparum chloroquine-sensitive and -resistant) also the cytotoxicity (MRC-5 cells) was determined. Several compounds such as 2-bromoneocryptolepine showing higher and more selective antiplasmodial activity than neocryptolepine were obtained. Several functional assays and in vitro tests were used to obtain additional information on the mechanism of action, i.e., the beta-haematin formation inhibitory assay (detoxification of haem) and the DNA-methylgreen displacement assay (interaction with DNA). It could be demonstrated that the 2- or 3-substituted neocryptolepine derivatives investigated here have about the same potency to inhibit the beta-haematin formation as chloroquine, indicating that inhibition of haemozoin formation makes at least an important contribution to their antiplasmodial activity, although their in vitro antiplasmodial activity is still less than chloroquine.

PubMed Disclaimer

Publication types

LinkOut - more resources