Photocatalytic oxygenation of anthracenes and olefins with dioxygen via selective radical coupling using 9-mesityl-10-methylacridinium ion as an effective electron-transfer photocatalyst
- PMID: 15584734
- DOI: 10.1021/ja048353b
Photocatalytic oxygenation of anthracenes and olefins with dioxygen via selective radical coupling using 9-mesityl-10-methylacridinium ion as an effective electron-transfer photocatalyst
Abstract
Visible light irradiation of the absorption band of 9-mesityl-10-methylacridinium ion (Acr+-Mes) in an O2-saturated acetonitrile (MeCN) solution containing 9,10-dimethylanthracene results in formation of oxygenation product, i.e., dimethylepidioxyanthracene (Me2An-O2). Anthracene and 9-methylanthracene also undergo photocatalytic oxygenation with Acr+-Mes to afford the corresponding epidioxyanthracenes under the photoirradiation. In the case of anthracene, the further photoirradiation results in formation of anthraquinone as the final six-electron oxidation product, via 10-hydroxyanthrone, accompanied by generation of H2O2. When anthracene is replaced by olefins (tetraphenylethylene and tetramethylethylene), the photocatalytic oxygenation of olefins affords the corresponding dioxetane, in which the O-O bond is cleaved to yield the corresponding ketones. The photocatalytic oxygenation of anthracenes and olefins is initiated by photoexcitation of Acr+-Mes, which results in formation of the electron-transfer state: Acr*-Mes*+, followed by electron transfer from anthracenes and olefins to the Mes*+ moiety together with electron transfer from the Acr* moiety to O2. The resulting anthracene and olefin radical cations undergo the radical coupling reactions with O2*- to produce the epidioxyanthracene (An-O2) and dioxetane, respectively.
Similar articles
-
Organic synthetic transformations using organic dyes as photoredox catalysts.Org Biomol Chem. 2014 Aug 28;12(32):6059-71. doi: 10.1039/c4ob00843j. Epub 2014 Jul 2. Org Biomol Chem. 2014. PMID: 24984977
-
Photocatalytic formation of dimethyllepidopterene from 9,10-dimethylanthracene via electron-transfer oxidation.Org Lett. 2006 Dec 21;8(26):6079-82. doi: 10.1021/ol062554y. Org Lett. 2006. PMID: 17165934
-
Efficient photocatalytic oxygenation of aromatic alkene to 1,2-dioxetane with oxygen via electron transfer.Org Lett. 2005 Sep 15;7(19):4265-8. doi: 10.1021/ol051696+. Org Lett. 2005. PMID: 16146403
-
Photocatalytic Oxygenation Reactions Using Water and Dioxygen.ChemSusChem. 2019 Sep 6;12(17):3931-3940. doi: 10.1002/cssc.201901276. Epub 2019 Jul 25. ChemSusChem. 2019. PMID: 31250964 Review.
-
Functional molecular models of photosynthesis.iScience. 2024 Aug 8;27(9):110694. doi: 10.1016/j.isci.2024.110694. eCollection 2024 Sep 20. iScience. 2024. PMID: 39286498 Free PMC article. Review.
Cited by
-
Photocatalytic CO2 reduction with aminoanthraquinone organic dyes.Nat Commun. 2023 Feb 25;14(1):1087. doi: 10.1038/s41467-023-36784-7. Nat Commun. 2023. PMID: 36841825 Free PMC article.
-
Organic Photoredox Catalysis as a General Strategy for Anti-Markovnikov Alkene Hydrofunctionalization.Synlett. 2014;25(9):1191-1196. doi: 10.1055/s-0033-1340738. Epub 2014 Mar 5. Synlett. 2014. PMID: 29657365 Free PMC article.
-
Highly scalable photoinduced synthesis of silanols via untraversed pathway for chlorine radical (Cl•) generation.Nat Commun. 2023 Dec 9;14(1):8173. doi: 10.1038/s41467-023-43286-z. Nat Commun. 2023. PMID: 38071374 Free PMC article.
-
Taming the radical cation intermediate enabled one-step access to structurally diverse lignans.Nat Commun. 2022 Jun 16;13(1):3481. doi: 10.1038/s41467-022-31000-4. Nat Commun. 2022. PMID: 35710543 Free PMC article.
-
On the in vivo photochemical rate parameters for PDT reactive oxygen species modeling.Phys Med Biol. 2017 Mar 7;62(5):R1-R48. doi: 10.1088/1361-6560/62/5/R1. Epub 2017 Feb 6. Phys Med Biol. 2017. PMID: 28166056 Free PMC article. Review.
LinkOut - more resources
Full Text Sources
Miscellaneous