Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Apr 7;1134(3):189-96.
doi: 10.1016/0167-4889(92)90175-b.

Cell-specific regulation of plasminogen activator inhibitor 1 and tissue type plasminogen activator release by human kidney mesangial cells

Affiliations

Cell-specific regulation of plasminogen activator inhibitor 1 and tissue type plasminogen activator release by human kidney mesangial cells

M N Peraldi et al. Biochim Biophys Acta. .

Abstract

Human mesangial cells in culture synthesize and secrete plasminogen activator inhibitor 1 (PAI-1) and tissue-type plasminogen activator (t-PA). Phorbol myristate acetate (PMA), a known activator of protein kinase C, induces a three to four-fold increase in t-PA and PAI-1 release over a period of 24 h, whereas cell-associated t-PA and PAI-1 levels remain relatively stable. A similar effect is obtained with oleylacetyl glycerol, a more physiologic protein kinase C activator. The effect of PMA is suppressed in the presence of H7, an inhibitor of cellular protein kinases, and by cycloheximide and actinomycin D, indicating a requirement for de novo protein and RNA synthesis, respectively. Northern blot analysis of PMA-treated cells reveals a rapid and transient increase in PAI-1 mRNA reaching a maximum after 4-8 h, whereas increase in t-PA mRNA levels requires 24 h. Activation of protein kinase A by addition of 8-bromocyclic AMP (8-bromo cAMP) has no significant effect on PAI-1 release but inhibits the PMA-mediated increases in PAI-1 antigen and mRNA. Addition of 8-bromo cAMP alone does not affect t-PA release. When added to PMA-stimulated cells, 8-bromo cAMP inhibits t-PA release in a dose-dependent manner, but causes a superinduction of t-PA mRNA. 8-bromo cAMP also induces a decrease in PMA-stimulated intracellular t-PA release. Similar inhibition is observed after stimulation of endogenous adenylate cyclase with prostaglandin E1 or isoproterenol. This indicates that protein kinase A activation may inhibit PMA-stimulated t-PA release via a post-transcriptional effect, e.g. inhibition of protein synthesis or activation of protein degradation. In conclusion, hormones or mediators which activate protein kinase C can stimulate t-PA and PAI-1 synthesis in human mesangial cells. Protein kinase A activation has no effect on the basal release of PAI-1 and t-PA by human mesangial cells, and, in contrast to endothelial cells, it inhibits both PMA-stimulated PAI-1 and t-PA releases. This cell-specific regulation of t-PA and PAI-1 seems to be mediated by differential transcriptional and post transcriptional mechanisms.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources