Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec 30;140(1-2):93-101.
doi: 10.1016/j.jneumeth.2004.03.027.

On-line monitoring of striatum glucose and lactate in the endothelin-1 rat model of transient focal cerebral ischemia using microdialysis and flow-injection analysis with biosensors

Affiliations

On-line monitoring of striatum glucose and lactate in the endothelin-1 rat model of transient focal cerebral ischemia using microdialysis and flow-injection analysis with biosensors

Jan Bert Gramsbergen et al. J Neurosci Methods. .

Abstract

In vivo studies on cerebral glucose and lactate metabolism following a brain insult require fast and sensitive monitoring techniques. Here we report on-line monitoring of ischemic events and metabolic changes following reperfusion in striatum of freely moving rats subjected to endothelin-1 (60-240 pmol) induced, transient focal cerebral ischemia using slow microdialysis (0.5 microl/min), fast sampling (every minute) and flow-injection analysis with biosensors for glucose and lactate. The high-time resolution provides detailed information on lactate rise times and duration of low glucose. In rats, developing large striatal lesions, lactate increased from 1.0 +/- 0.1 to 4.2 +/- 0.7 mM within 37 +/- 1 min, whereas glucose dropped from 0.3 +/- 0.1 mM to below detection levels (<0.05 mM) for a period of 80 +/- 18 min. The lactate increase measured over a 2-h period after endothelin-1 infusion was highly correlated with striatal infarct size. In some rats oscillatory changes are observed which cannot be detected in traditional assays. The here-described monitoring technique applied in a clinically relevant rat model is a sensitive tool to study post-ischemic energy metabolism, effects of therapeutic interventions and its relationship with histological outcome.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources