Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005;130(3):667-84.
doi: 10.1016/j.neuroscience.2004.09.055.

Lifelong immunization with human beta-amyloid (1-42) protects Alzheimer's transgenic mice against cognitive impairment throughout aging

Affiliations

Lifelong immunization with human beta-amyloid (1-42) protects Alzheimer's transgenic mice against cognitive impairment throughout aging

M T Jensen et al. Neuroscience. 2005.

Abstract

Although both active and passive beta-amyloid (Abeta) immunotherapy have been shown to protect against or lessen cognitive impairment in various Alzheimer's transgenic mouse lines, these studies have focused on a single task and involved standard statistical analysis. Because Alzheimer's disease impacts multiple cognitive domains, the current study employed an extensive behavioral battery and multimetric analysis therein to determine the impact of Abeta immunization given throughout most of adult life (from 2-16 1/2 months of age) to APP+PS1 transgenic mice. At both adult (4 1/2-6 month) and aged (15-16 1/2 month) test points, the same 6-week behavioral battery was administered. Results indicate that Abeta immunotherapy partially or completely protected APP+PS1 mice at both test points from otherwise impaired performance in a variety of tasks spanning multiple cognitive domains (reference learning/memory, working memory, search/recognition). At both adult and aged test points, the cognitive benefits of Abeta immunotherapy were evident even when behavioral measures were analyzed collectively (as "overall" performance) through discriminant function analysis. Since behavioral protection at the 15-16 1/2 month test point occurred without a decrease in (or correlation to) Abeta deposition, the mechanism of Abeta immunotherapy's action most likely involves neutralization/removal of small Abeta oligomers from the brain. However, in factor analysis performed at this aged test point, brain Abeta deposition measures loaded heavily with key cognitive measures. Collectively, our results suggest that the entire process of Abeta deposition deleteriously impacts cognitive performance and that Abeta-based preventative strategies can provide long-term cognitive benefits extending well into older age.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms