Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Feb 18;280(7):5909-16.
doi: 10.1074/jbc.M409037200. Epub 2004 Dec 6.

Alternative usages of multiple promoters of the acetyl-CoA carboxylase beta gene are related to differential transcriptional regulation in human and rodent tissues

Affiliations
Free article
Comparative Study

Alternative usages of multiple promoters of the acetyl-CoA carboxylase beta gene are related to differential transcriptional regulation in human and rodent tissues

So-Young Oh et al. J Biol Chem. .
Free article

Abstract

Acetyl-CoA carboxylase beta (ACCbeta) is a critical enzyme in the regulation of fatty acid oxidation and is dominantly expressed in the skeletal muscle, heart, and liver. It has been established that two promoters, P-I and P-II, control the transcription of the ACCbeta gene. However, the precise mechanism involved in controlling tissue-specific gene expression of ACCbeta is largely unknown yet. In this study we revealed that promoter P-I, active in the skeletal muscle and heart but not in the liver, could be activated by myogenic regulatory factors and retinoid X receptors in a synergistic manner. Moreover, P-I was also activated markedly by the cardiac-specific transcription factors, Csx/Nkx2.5 and GATA4. These results suggest that the proper stimulation of P-I by these tissue-specific transcription factors is important for the expression of ACCbeta according to the tissue types. In addition, CpG sites around human exon 1a transcribed by P-I are half-methylated in muscle but completely methylated in the liver, where P-I is absolutely inactive. In humans, the skeletal muscle uses P-II as well as P-I, whereas only P-I is active in rat skeletal muscle. The proximal myogenic regulatory factor-binding sites in human P-II, which are not conserved in rat P-II, might contribute to this difference in P-II usage between human and rat skeletal muscle. Hepatoma-derived cell lines primarily use another novel promoter located about 3 kilobases upstream of P-I, designated as P-O. This study is the first to explain the mechanisms underlying the differential regulation of ACCbeta gene expression between tissues in living organisms.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources