Alternative usages of multiple promoters of the acetyl-CoA carboxylase beta gene are related to differential transcriptional regulation in human and rodent tissues
- PMID: 15590647
- DOI: 10.1074/jbc.M409037200
Alternative usages of multiple promoters of the acetyl-CoA carboxylase beta gene are related to differential transcriptional regulation in human and rodent tissues
Abstract
Acetyl-CoA carboxylase beta (ACCbeta) is a critical enzyme in the regulation of fatty acid oxidation and is dominantly expressed in the skeletal muscle, heart, and liver. It has been established that two promoters, P-I and P-II, control the transcription of the ACCbeta gene. However, the precise mechanism involved in controlling tissue-specific gene expression of ACCbeta is largely unknown yet. In this study we revealed that promoter P-I, active in the skeletal muscle and heart but not in the liver, could be activated by myogenic regulatory factors and retinoid X receptors in a synergistic manner. Moreover, P-I was also activated markedly by the cardiac-specific transcription factors, Csx/Nkx2.5 and GATA4. These results suggest that the proper stimulation of P-I by these tissue-specific transcription factors is important for the expression of ACCbeta according to the tissue types. In addition, CpG sites around human exon 1a transcribed by P-I are half-methylated in muscle but completely methylated in the liver, where P-I is absolutely inactive. In humans, the skeletal muscle uses P-II as well as P-I, whereas only P-I is active in rat skeletal muscle. The proximal myogenic regulatory factor-binding sites in human P-II, which are not conserved in rat P-II, might contribute to this difference in P-II usage between human and rat skeletal muscle. Hepatoma-derived cell lines primarily use another novel promoter located about 3 kilobases upstream of P-I, designated as P-O. This study is the first to explain the mechanisms underlying the differential regulation of ACCbeta gene expression between tissues in living organisms.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous