Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2005 Feb;25(2):411-7.
doi: 10.1161/01.ATV.0000153087.36428.dd. Epub 2004 Dec 9.

Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia

Affiliations
Case Reports

Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia

Claudio Priore Oliva et al. Arterioscler Thromb Vasc Biol. 2005 Feb.

Abstract

Objective: Mutations in LPL or APOC2 genes are recognized causes of inherited forms of severe hypertriglyceridemia. However, some hypertrigliceridemic patients do not have mutations in either of these genes. Because inactivation or hyperexpression of APOA5 gene, encoding apolipoprotein A-V (apoA-V), causes a marked increase or decrease of plasma triglycerides in mice, and because some common polymorphisms of this gene affect plasma triglycerides in humans, we have hypothesized that loss of function mutations in APOA5 gene might cause hypertriglyceridemia.

Methods and results: We sequenced APOA5 gene in 10 hypertriglyceridemic patients in whom mutations in LPL and APOC2 genes had been excluded. One of them was found to be homozygous for a mutation in APOA5 gene (c.433 C>T, Q145X), predicted to generate a truncated apoA-V devoid of key functional domains. The plasma of this patient was found to activate LPL in vitro less efficiently than control plasma, thus suggesting that apoA-V might be an activator of LPL. Ten carriers of Q145X mutation were found in the patient's family; 5 of them had mild hypertriglyceridemia.

Conclusions: As predicted from animal studies, apoA-V deficiency is associated with severe hypertriglyceridemia in humans. This observation suggests that apoA-V regulates the secretion and/or catabolism of triglyceride-rich lipoproteins. Mutations in APOA5 gene might be the cause of severe hypertriglyceridemia in subjects in whom mutations in LPL or APOC2 genes have been excluded. We detected a nonsense mutation in APOA5 gene (Q145X) in a boy with hyperchylomicronemia syndrome. This is the first observation of a complete apoA-V deficiency in humans.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources