Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan;88(1):21-9.
doi: 10.3168/jds.S0022-0302(05)72658-8.

Fermentation pH and temperature influence the cryotolerance of Lactobacillus acidophilus RD758

Affiliations
Free article

Fermentation pH and temperature influence the cryotolerance of Lactobacillus acidophilus RD758

Y Wang et al. J Dairy Sci. 2005 Jan.
Free article

Abstract

The effects of 3 fermentation temperatures (30, 37, and 42 degrees C) and 3 fermentation pH (4.5, 5, and 6) on the cryotolerance of Lactobacillus acidophilus RD758 were studied in relation to their fatty acid composition. Cryotolerance was defined as the ability of the cells to recover their acidification activity after freezing and frozen storage at -20 degrees C. Better cryotolerance was obtained in cells grown at 30 degrees C or at pH 5; these cells showed no loss in acidification activity during freezing and a low rate of loss in acidification activity during frozen storage. On the other hand, cells grown at 42 degrees C or at pH 4.5 displayed poor cryotolerance. The membrane fatty acid composition was analyzed and related to the cryotolerance using principal component analysis. The improved cryotolerance observed during the freezing step was associated with a high ratio of unsaturated to saturated fatty acids, a low C18:0 content, and high C16:0 and cyclic C19:0 relative concentrations. High resistance during frozen storage was related to a high cycC19:0 concentration. Finally, the low cryotolerance observed after fermentation at pH 4.5 was explained by a low C18:2 content.

PubMed Disclaimer

MeSH terms

LinkOut - more resources