Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Dec;96(4):401-5.
doi: 10.1254/jphs.fmj04006x4. Epub 2004 Dec 15.

Malfunction of vascular control in lifestyle-related diseases: mechanisms underlying endothelial dysfunction in the insulin-resistant state

Affiliations
Free article
Review

Malfunction of vascular control in lifestyle-related diseases: mechanisms underlying endothelial dysfunction in the insulin-resistant state

Kazuya Shinozaki et al. J Pharmacol Sci. 2004 Dec.
Free article

Abstract

It is tempting to speculate that increased vasoconstriction and loss of endothelium-dependent vasodilation might be etiological factors of elevated blood pressure in the insulin-resistant state. Vascular contraction induced by angiotensin II and the expression of NAD(P)H oxidase were increased in the aorta of insulin-resistant mice. In addition, both angiotensin II type 1 receptor expression and superoxide anion production were up-regulated in these mice. Another mechanism for imparing endothelial function is the uncoupling of endothelial nitric oxide synthase (eNOS). It has become clear from studies on the aorta of insulin-resistant rat that insulin resistance may be a pathogenic factor for endothelial dysfunction through impaired eNOS activity and increased oxidative breakdown of NO (nitric oxide) due to an enhanced formation of superoxide anion (NO/superoxide anion imbalance), which are caused by relative deficiency of tetrahydrobiopterin, a cofactor of NOS, in vascular endothelial cells. Supplementation of tetrahydrobiopterin restored endothelial function and relieved oxidative tissue damage through activation of eNOS in those rats. These results indicate that generation of superoxide anion from NAD(P)H oxidases and an uncoupled eNOS may be pathogenic factors for impaired endothelial function and hypertension in the insulin-resistant state.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms