Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec;96(4):450-8.
doi: 10.1254/jphs.fpj04039x. Epub 2004 Dec 10.

Combined effects of psychostimulants and morphine on locomotor activity in mice

Affiliations
Free article

Combined effects of psychostimulants and morphine on locomotor activity in mice

Tomohisa Mori et al. J Pharmacol Sci. 2004 Dec.
Free article

Abstract

Simultaneous administration of psychostimulants and opioids is a major drug abuse problem worldwide. This combination appears to produce synergistic effects on behavior at low doses; however, there is little direct evidence that the combination is stronger than either drug alone. Therefore, we investigated interactions between psychostimulants and morphine on locomotor activity in mice. Low doses of cocaine (5.0 mg/kg) or methamphetamine (0.5 mg/kg) and morphine (10 mg/kg) enhance locomotor activity in a synergistic fashion. Effective doses of cocaine (20 mg/kg) and morphine (20 mg/kg) increased locomotion in an additive fashion. In contrast, combination of methamphetamine (1.0 and 2.0 mg/kg) and morphine (10 and 20 mg/kg) did not merely enhance their effects (or attenuated the peak effects of methamphetamine-induced hyperlocomotion). These results indicate that different mechanisms explain the interaction between morphine and methamphetamine or cocaine. It is well known that psychostimulants- and opioids-induced hyperlocomotion is mediated by the activation of the dopaminergic system, however, haloperidol (a dopamine receptor antagonist) and U50,488H (which attenuates dopamine release from nerve terminals) significantly increased the effects of methamphetamine and morphine on the locomotor activity. These results suggest that excess dopaminergic activation may be involved in the effects of methamphetamine and morphine on locomotor activity in mice.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances