Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan;66(4):393-400.
doi: 10.1007/s00253-004-1749-5. Epub 2004 Oct 27.

Discovery of a thermostable Baeyer-Villiger monooxygenase by genome mining

Affiliations

Discovery of a thermostable Baeyer-Villiger monooxygenase by genome mining

Marco W Fraaije et al. Appl Microbiol Biotechnol. 2005 Jan.

Abstract

Baeyer-Villiger monooxygenases represent useful biocatalytic tools, as they can catalyze reactions which are difficult to achieve using chemical means. However, only a limited number of these atypical monooxygenases are available in recombinant form. Using a recently described protein sequence motif, a putative Baeyer-Villiger monooxygenase (BVMO) was identified in the genome of the thermophilic actinomycete Thermobifida fusca. Heterologous expression of the respective protein in Escherichia coli and subsequent enzyme characterization showed that it indeed represents a BVMO. The NADPH-dependent and FAD-containing monooxygenase is active with a wide range of aromatic ketones, while aliphatic substrates are also converted. The best substrate discovered so far is phenylacetone (k(cat) = 1.9 s(-1), K(M) = 59 microM). The enzyme exhibits moderate enantioselectivity with alpha-methylphenylacetone (enantiomeric ratio of 7). In addition to Baeyer-Villiger reactions, the enzyme is able to perform sulfur oxidations. Different from all known BVMOs, this newly identified biocatalyst is relatively thermostable, displaying an activity half-life of 1 day at 52 degrees C. This study demonstrates that, using effective annotation tools, genomes can efficiently be exploited as a source of novel BVMOs.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources