Developmental waves in myxobacteria: A distinctive pattern formation mechanism
- PMID: 15600439
- DOI: 10.1103/PhysRevE.70.041911
Developmental waves in myxobacteria: A distinctive pattern formation mechanism
Abstract
In early stages of their development, starving myxobacteria organize their motion to produce a periodic pattern of traveling cell density waves. These waves arise from coordination of individual cell reversals by contact signaling when they collide. Unlike waves generated by reaction-diffusion instabilities, which annihilate on collision, myxobacteria waves appear to pass through one another unaffected. Here we analyze a mathematical model of these waves developed earlier [Proc. Natl. Acad. Sci. USA 98, 14 913 (2001)]]. The mechanisms which generate and maintain the density waves are clearly revealed by tracing the reversal loci of individual cells. An evolution equation of reversal point density is derived in the weak-signaling limit. Linear stability analysis determines parameters favorable for the development of the waves. Numerical solutions demonstrate the stability of the fully developed nonlinear waves.
Similar articles
-
Wavelength selection of rippling patterns in myxobacteria.Phys Rev E. 2016 Jan;93(1):012412. doi: 10.1103/PhysRevE.93.012412. Epub 2016 Jan 25. Phys Rev E. 2016. PMID: 26871106
-
A generalized discrete model linking rippling pattern formation and individual cell reversal statistics in colonies of myxobacteria.Phys Biol. 2006 Jun 23;3(2):138-46. doi: 10.1088/1478-3975/3/2/006. Phys Biol. 2006. PMID: 16829700
-
An individual based model of rippling movement in a myxobacteria population.J Theor Biol. 2005 Jun 7;234(3):341-9. doi: 10.1016/j.jtbi.2004.11.028. Epub 2005 Jan 20. J Theor Biol. 2005. PMID: 15784269
-
Reversing cell polarity: evidence and hypothesis.Curr Opin Microbiol. 2005 Apr;8(2):216-21. doi: 10.1016/j.mib.2005.02.002. Curr Opin Microbiol. 2005. PMID: 15802255 Review.
-
Coupling cell movement to multicellular development in myxobacteria.Nat Rev Microbiol. 2003 Oct;1(1):45-54. doi: 10.1038/nrmicro733. Nat Rev Microbiol. 2003. PMID: 15040179 Review.
Cited by
-
Interconnected cavernous structure of bacterial fruiting bodies.PLoS Comput Biol. 2012;8(12):e1002850. doi: 10.1371/journal.pcbi.1002850. Epub 2012 Dec 27. PLoS Comput Biol. 2012. PMID: 23300427 Free PMC article.
-
Agent-Based Modeling Reveals Possible Mechanisms for Observed Aggregation Cell Behaviors.Biophys J. 2018 Dec 18;115(12):2499-2511. doi: 10.1016/j.bpj.2018.11.005. Epub 2018 Nov 10. Biophys J. 2018. PMID: 30514635 Free PMC article.
-
Wavenumber selection in coupled transport equations.J Math Biol. 2017 Nov;75(5):1047-1073. doi: 10.1007/s00285-017-1107-8. Epub 2017 Feb 21. J Math Biol. 2017. PMID: 28224236
-
Data-Driven Models Reveal Mutant Cell Behaviors Important for Myxobacterial Aggregation.mSystems. 2020 Jul 14;5(4):e00518-20. doi: 10.1128/mSystems.00518-20. mSystems. 2020. PMID: 32665330 Free PMC article.
-
Accordion waves in Myxococcus xanthus.Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1534-9. doi: 10.1073/pnas.0507720103. Epub 2006 Jan 23. Proc Natl Acad Sci U S A. 2006. PMID: 16432222 Free PMC article.