Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Apr 15;148(8):2331-9.

Follicular dendritic cell-dependent adhesion and proliferation of B cells in vitro

Affiliations
  • PMID: 1560196

Follicular dendritic cell-dependent adhesion and proliferation of B cells in vitro

M H Kosco et al. J Immunol. .

Abstract

In response to an antigenic challenge, B cells proliferate in germinal centers within secondary lymphoid tissue. Specialized accessory cells, follicular dendritic cells (FDC), and T cells are necessary to drive this reaction. Indirect evidence suggests that FDC provide signals which not only induce B cell proliferation but can rescue B cells programmed to die by apoptosis. An in vitro system was developed to: 1) define the role of FDC and 2) identify molecules involved in this response. Activated, low density B cells and T cells were coisolated with FDC from immune mouse lymph nodes. Upon culturing, large cellular aggregates formed, composed of 1 to 3 FDC interdigitating between 30 to 90 B cells and 1 to 5 T cells. Many of these B cells were undergoing DNA synthesis. Depleting FDC or T cells from the cultures immediately stopped cluster formation and proliferation. Separating clustered vs nonclustered cells revealed that the FDC-associated population remained viable, whereas cells in suspension became apoptotic. The adhesion/activation molecules ICAM-1, LFA-1, and CD44 supported both cluster formation and proliferation. In addition, anti-class II and anti-kappa L chain mAb interfered dramatically with DNA synthesis. This model mimics many of the features of a germinal center and can be used to further study B cell activation, proliferation, and differentiation in vitro.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources